Description
Photoreceptor damage in adult mammals results in permanent cell loss and glial scarring in the retina. In contrast, adult zebrafish can regenerate photoreceptors following injury. By using a stable transgenic line in which GFP is driven by the cis-regulatory sequences of a glial specific marker gfap, Tg(gfap:GFP)mi2002, previous studies showed that Mller glia, the radial glial cells in the retina, proliferate after photoreceptor loss and give rise to neuronal progenitors that eventually differentiate into regenerated photoreceptors. To identify the molecular mechanisms that initiate this regenerative response, Mller glia were isolated from Tg(gfap:GFP)mi2002 fish during the early stages of regeneration after light lesion and gene expression profiles were generated by microarray analyses.