Description
It is widely believed that the carcinogenic action of ionizing radiation is due to targeted DNA damage and resulting mutations, but there is also substantial evidence that non-targeted radiation effects alter epithelial phenotype and the stromal microenvironment. Activation of transforming growth factor 1 (TGF) is a non-targeted radiation effect that mediates cell fate decisions following DNA damage and regulates microenvironment composition; it could either suppress or promote cancer. We asked if such non-targeted radiation effects contribute to carcinogenesis by using a novel radiation chimera model. Unirradiated Trp53 null mammary epithelium was transplanted to the mammary stroma, previously divested of endogenous epithelia, of mice previously exposed to a single low (10 -100 cGy) radiation dose. By 300 days, 100% of transplants in irradiated hosts at either 10 or 100 cGy had developed Trp53 null breast carcinomas compared to 54% in unirradiated hosts. Tumor growth rate was also increased by high, but not low, dose host irradiation. In contrast, irradiation of Tgfb1 heterozygote mice prior to transplantation failed to decrease tumor latency, or increase growth rate at any dose. Host irradiation significantly reduced the latency of invasive ductal carcinoma compared to spindle cell carcinoma. However, irradiation of either host genotype significantly increased the frequency of estrogen receptor negative tumors. These data demonstrate two concepts critical to understanding radiation risks. First, non-targeted radiation effects can significantly promote the frequency and alter the features of epithelial cancer. Second, radiation-induced TGF activity is a key mechanism of tumor promotion.