Description
PURPOSE: Hyperoxia is toxic to photoreceptors, and this toxicity may be important in the progress of retinal dystrophies. This microarray study examines gene expression induced in the C57BL/6J mouse retina by hyperoxia over the 14-day period during which photoreceptors first resist, then succumb to, hyperoxia. METHODS: Young adult C57BL/6J mice were exposed to hyperoxia (75% oxygen) for up to 14 days. On day 0 (control), day 3, day 7, and day 14, retinal RNA was extracted and processed on Affymetrix GeneChip Mouse Genome 430 2.0 arrays. Microarray data were analyzed using GCOS Version 1.4 and GeneSpring Version 7.3.1. RESULTS: The overall numbers of hyperoxia-regulated genes increased monotonically with exposure. Within that increase, however, a distinctive temporal pattern was apparent. At 3 days exposure, there was prominent upregulation of genes associated with neuroprotection. By day 14, these early-responsive genes were downregulated, and genes related to cell death were strongly expressed. At day 7, the regulation of these genes was mixed, indicating a possible transition period from stability at day 3 to degeneration at day 14. CONCLUSIONS: Microarray analysis of the response of the retina to prolonged hyperoxia demonstrated a temporal pattern involving early neuroprotection and later cell death, and provided insight into the mechanisms involved in the two phases of response. As hyperoxia is a consistent feature of the late stages of photoreceptor degenerations, understanding the mechanisms of oxygen toxicity may be important therapeutically.