Description
Despite its key role in Alzheimer pathogenesis, the physiological function(s) of the amyloid precursor protein (APP) and of its proteolytic fragments are still poorly understood. The secreted APPs ectodomain has been shown to be involved in neuroprotection and synaptic plasticity. The -secretase generated APP intracellular domain, AICD, functions as a transcriptional regulator in heterologous reporter assays although its role for endogenous gene regulation has remained controversial. Previously, we have generated APPs knockin (KI) mice expressing solely the secreted ectodomain APPs. Here, we generated double mutants (APPs-DM) by crossing APPs-KI mice onto an APLP2-deficient background and show that APPs rescues the postnatal lethality of the majority of APP/APLP2 double knockout mice. Despite normal CNS morphology and unaltered basal synaptic transmission, young APPs-DM mice already showed pronounced hippocampal dysfunction, impaired spatial learning and a deficit in LTP. To gain further mechanistic insight into which domains/proteolytic fragments are crucial for hippocampal APP/APLP2 mediated functions, we performed a DNA microarray transcriptome profiling of prefrontal cortex and hippocampus of adult APLP2-KO (APLP2-/-) and APPs-DM mice (APP/APLP2-/- mice).Interestingly, this analysis failed to reveal major genotype-related transcriptional differences. Expression differences between cortex and hippocampus were, however, readily detectable.