github link
Accession IconGSE34807

The estrogen receptor is required and sufficient to maintain physiological glucose uptake in the mouse heart

Organism Icon Mus musculus
Sample Icon 20 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Submitter Supplied Information

Description
Rationale: Estrogens attenuate cardiac hypertrophy and increase cardiac contractility via their cognate receptors ER and ER. Since female sex hormones enhance global glucose utilization and because myocardial function and mass are tightly linked to cardiac glucose metabolism we tested the hypothesis that expression and activation of the estrogen receptor (ER) might be required and sufficient to maintain physiological cardiac glucose uptake in the murine heart. Methods and Results: Cardiac glucose uptake quantified in vivo by 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) was strongly impaired in ovarectomized compared to gonadal intact female C57BL/6JO mice. The selective ER agonist 16-LE2 and the non-selective ER and ER agonist 17-estradiol completely restored cardiac glucose uptake in ovarectomized mice. Cardiac FDG uptake was strongly decreased in female ER knockout mice (ERKO) compared to wild type littermates. Biochemical assays, affymetrix cDNA array analysis, western blotting and immuno-staining of cardiac glucose transporters revealed a positive correlation of ER dependent cardiac FDG uptake with preserved cardiac glucose transporter-1 expression and micro-vascular localization. Conclusions: Systemic activation of the ER estrogen receptor is sufficient and its expression is required to maintain physiological glucose uptake in the murine heart, which is likely to contribute to known cardio-protective estrogen effects.
PubMed ID
No associated PubMed ID
Publication Title
No associated publication
Total Samples
20
Submitter’s Institution
Authors
No associated authors

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Age
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...