Description
The skin interfollicular epidermis (IFE) is the first barrier against the external environment and its maintenance is critical for survival. Two seemingly opposite theories have been proposed to explain IFE homeostasis. One posits that IFE is maintained by a long-lived slow-cycling stem cell (SC) population that give rise to short-lived transit-amplifying (TA) cell progeny, while the other suggests that homeostasis is achieved by a single committed progenitor (CP) that balances stochastic fate. Here, we probed the cellular heterogeneity within the IFE using two different inducible CREER targeting IFE progenitors. Quantitative analysis of clonal fate data and proliferation dynamics demonstrate the existence of two distinct proliferative cell compartments composed of slow-cycling SC and CP, both of which undergo population asymmetric self-renewal. However, following wounding, only SCs contribute substantially to the repair and long-term regeneration of the tissue, while CP cells make a minimal and transient contribution.