The blood-brain barrier (BBB) consists of specific physical barriers, enzymes and transporters, which together maintain the necessary extracellular environment of the central nervous system (CNS). The main physical barrier is found in the CNS endothelial cell, and depends on continuous complexes of tight junctions combined with reduced vesicular transport. Other possible constituents of the BBB include extracellular matrix, astrocytes and pericytes, but the relative contribution of these different components to the BBB remains largely unknown. Here we demonstrate a direct role of pericytes at the BBB in vivo. Using a set of adult viable pericyte-deficient mouse mutants we show that pericyte deficiency increases the permeability of the BBB to water and a range of low-molecular-mass and high-molecular-mass tracers. The increased permeability occurs by endothelial transcytosis, a process that is rapidly arrested by the drug imatinib. Furthermore, we show that pericytes function at the BBB in at least two ways: by regulating BBB-specific gene expression patterns in endothelial cells, and by inducing polarization of astrocyte end-feet surrounding CNS blood vessels. Our results indicate a novel and critical role for pericytes in the integration of endothelial and astrocyte functions at the neurovascular unit, and in the regulation of the BBB.
Pericytes regulate the blood-brain barrier.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Polycomb repressive complex 2 is required for MLL-AF9 leukemia.
Specimen part, Disease, Disease stage
View SamplesWe evaluated gene expression changes in murine leukemia caused by retroviral overexpression of MLL-AF9. We compared wild-type (WT) leukemia cells with mutant leukemia cells after cre-mediated inactivation of homozygous conditional alleles for Ezh2 or Eed, both of which are components of the Polycomb Repressive Complex2.
Polycomb repressive complex 2 is required for MLL-AF9 leukemia.
Specimen part, Disease, Disease stage
View SamplesWe evaluated gene expression changes in secondary recipient murine leukemia caused by retroviral overexpression of MLL-AF9. We compared wild-type (WT) leukemia cells with mutant leukemia cells after cre-mediated inactivation of a homozygous conditional allele for Ezh2, a component of the Polycomb Repressive Complex2.
Polycomb repressive complex 2 is required for MLL-AF9 leukemia.
Specimen part, Disease, Disease stage
View SamplesThe LIM-only protein FHL2 acts as a transcriptional modulator that positively or negatively regulates multiple signaling pathways. We recently reported that FHL2 cooperates with CBP/p300 in the activation of -catenin/TCF target gene cyclin D1. In this paper, we demonstrate that FHL2 is associated with the cyclin D1 promoter at the TCF/CRE site, providing evidence that cyclin D1 is a direct target of FHL2. We show that deficiency of FHL2 greatly reduces the proliferative capacity of spontaneously immortalized mouse fibroblasts which is associated with decreased expression of cyclin D1 and p16INK4a, and hypophosphorylation of Rb. Reexpression of FHL2 in FHL2-null fibroblasts efficiently restores cyclin D1 levels and cell proliferative capacity, indicating that FHL2 is critical for cyclin D1 activation and cell growth. Moreover, ectopic cyclin D1 expression is sufficient to override growth inhibition of immortalized FHL2-null fibroblasts. Gene expression profiling revealed that FHL2 deficiency triggers a broad change of the cell cycle program that is associated with downregulation of several G1/S and G2/M cyclins, E2F transcription factors and DNA replication machinery, thus correlating with reduced cell proliferation. This change also involves downregulation of the negative cell cycle regulators, particularly INK4 inhibitors, which could counteract the decreased expression of cyclins, allowing cells to grow. Our study illustrates that FHL2 can act on different aspects of the cell cycle program to finely regulate cell proliferation.
The LIM-only protein FHL2 regulates cyclin D1 expression and cell proliferation.
No sample metadata fields
View SamplesMLL-fusions may induce leukemogenic gene expression programs by recruiting the histone H3K79 methyltransferase to MLL-target promoters. We evaluated gene expression changes after cre-mediated loss of Dot1l in leukemia cells obtained from mice injected with MLL-9 transformed lineage negative bone marrow cells.
MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L.
Specimen part
View SamplesWe investigated the role of mTORC1 in murine hematopoiesis by conditionally deleting the Raptor gene in murine hematopoietic stem cells. We observed mutliple alterations evoked by Raptor loss in hematopoiesis and profiled gene-expression alterations induced by raptor loss in Flt3-Lin-Sca1+cKit+ hematopoietic stem and progenitor enriched cell populations, 5 weeks post Raptor deletion.
mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis.
Specimen part
View SamplesThis study examined the effects of castration and testosterone replacement on global differential gene transcription in the gastrocnemius muscle (m.Gas) in young adult mice over 14-days.
Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle.
Specimen part
View Samples