This SuperSeries is composed of the SubSeries listed below.
Atrial identity is determined by a COUP-TFII regulatory network.
Age, Specimen part
View SamplesAtria and ventricles exhibit distinct molecular profiles that produce structural and functional differences between the two cardiac compartments. However, factors that determine these differences remain largely undefined. Cardiomyocyte-specific COUP- TFII ablation produces ventricularized atria that exhibit ventricle-like action potentials, increased cardiomyocyte size, and development of extensive T-tubules.
Atrial identity is determined by a COUP-TFII regulatory network.
Age, Specimen part
View SamplesDysregulated Wnt signalling is seen in approximately 30% of hepatocellular cancers, thus finding pathways downstream of activation of Wnt signalling is key. Using cre lox technology we have deleted the the adenomatous polyposis coli tumour suppressor protein (Apc) within the adult mouse liver and observed a rapid increase in nuclear beta-catenin and C-Myc. This is associated with an induction of proliferation leading to hepatomegally within 4 days of gene deletion. To investigate the downstream pathways responsible for these phenotypes we analysed the impact of inactivating Apc in the context of deficiency of the potentially key effectors beta-catenin and c-Myc. beta-catenin loss rescues both the proliferation and hepatomegally phenotypes following Apc loss. However c-Myc deletion, which rescues the phenotypes of Apc loss in the intestine, had no effect on the phenotypes of Apc loss. The consequences of deregulation the Wnt pathway within the liver are therefore strikingly different to those observed within the intestine, with the vast majority of Wnt targets beta-catenin dependent but c-Myc independent in the liver.
B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver.
No sample metadata fields
View Samples