The mechanisms involved in epithelium-stroma interactions remain poorly understood, despite the importance of the microenvironment during tumorigenesis. Here, we studied the role of Ets2 transcrpiton factor in tumor associated fibroblasts in the MMTV-ErbB2 mammary tumor model. Inactivation of Ets2 specifically in fibroblasts using Fsp-cre significantly reduced tumor growth, in contrast to Ets2 inactivation in epithelium in which no differences in tumor growth were observed.
Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.
Age, Specimen part
View SamplesmiR-92 enhances c-Myc induced apoptosis. In the R26MER/MER mouse embryonic fibroblasts (MEFs), a switchable variant of Myc, MycERT2, was knocked into the genomic region downstream of the constitutive Rosa26 promoter, allowing acute activation of c-Myc by 4-OHT-induced nuclear translocation. This in vitro system nicely recapitulates c-Myc-induced apoptosis, as activated MycERT2 induces strong p53-dependent apoptosis in response to serum starvation. Enforced miR-92 expression in three independent R26MER/MER MEF lines significantly enhanced Myc-induced apoptosis.
A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis.
Specimen part
View SamplesTo determine the modulation of gene expression of mouse BMDCs in the presence of living intracellular Leishmania amazonensis amastigotes
Sorting of Leishmania-bearing dendritic cells reveals subtle parasite-induced modulation of host-cell gene expression.
Sex, Age
View SamplesThis study was aimed at identifying Tbx1 dosage-dependent genes in vivo, so we performed a transcriptome analysis of Tbx1 mutants with nine different genotypes corresponding to different Tbx1 mRNA dosages.
In vivo response to high-resolution variation of Tbx1 mRNA dosage.
Specimen part
View SamplesWe have determined the whole genome sequence of an individual at high accuracy and performed an integrated analysis of omics profiles over a 1.5 year period that included healthy and two virally infected states. Omics profiling of transcriptomes, proteomes, cytokines, metabolomes and autoantibodyomes from blood components have revealed extensive, dynamic and broad changes in diverse molecular components and biological pathways that occurred during healthy and disease states. Many changes were associated with allele- and edit-specific expression at the RNA and protein levels, which may contribute to personalized responses. Importantly, genomic information was also used to predict medical risks, including Type II Diabetes (T2D), whose onset was observed during the course of our study using standard clinical tests and molecular profiles, and whose disease progression was monitored and subsequently partially managed. Our study demonstrates that longitudinal personal omics profiling can relate genomic information to global functional omics activity for physiological and medical interpretation of healthy and disease states. Overall design: Examination of blood component in 20 different time points over 1.5 years which includes 2 disease state and 18 healty state Related exome studies at: SRX083314 SRX083313 SRX083312 SRX083311
Personal omics profiling reveals dynamic molecular and medical phenotypes.
Specimen part, Disease, Subject
View SamplesIKK kinase is essential for the B cell maturation and secondary lymphoid organ development. In the current study, we evaluated the role of IKK in the marginal zone and follicular B lymphocyte development by genetically deleting IKK from the B cell lineage using CD19-Cre mice. The loss of IKK did not affect the normal development of early B cell progenitors. However, a significant decline was observed in the percentage of immature B lymphocytes, mature marginal zone and follicular B cells along with a severe disruption of splenic marginal and follicular B cell zones. A gene expression analysis performed on the RNA extracted from the newly formed B cells (B220+IgMhi) revealed that IKK deficiency produces significant changes in the expression of genes involved in MZ and FO B lymphocyte survival, homing and migration. And several among those genes identified belong to G protein family. Specifically, we validated the upregulated expression of regulator of G protein signaling 13 (RGS13), which is a GTPase activating protein (GAP) that negatively regulates G protein signaling and impede B cell migration. Likewise, promigratory B lymphocyte receptor, the sphingosine-1-phosphate receptor 3 (SIPR3) that couple to Gi showed significantly reduced expression. In addition, an in silico analysis of gene product interactions revealed NF-B signaling pathways to be a major gene regulating networks perturbed with IKK deletion. Taken together, this study reveals IKKNF-B and G protein signaling axis to be central for the MZ and FO B cells survival, maintenance, homing and migration.
IKKα deficiency disrupts the development of marginal zone and follicular B cells.
Specimen part
View SamplesREST is a master regulator of genes that are involved in the acqusition of neuronal fate. The role of REST is not well understood so we attempted to investigate the role of REST in the development of neural cells by analysing the genes that are upregulated when REST is knocked down via shRNA
REST regulates the pool size of the different neural lineages by restricting the generation of neurons and oligodendrocytes from neural stem/progenitor cells.
Specimen part
View SamplesDomesticated animal populations often show profound reductions in predator avoidance and fear-related behavior compared to wild populations. These reductions are remarkably consistent and have been observed in a diverse array of taxa including fish, birds, and mammals. Experiments conducted in common environments indicate that these behavioral differences have a genetic basis. In this study, we quantified differences in fear-related behavior between wild and domesticated zebrafish strains and used microarray analysis to identify genes that may be associated with this variation.
Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio).
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility.
Sex
View SamplesGene expression in self-renewing epithelial tissues is controlled by cis- and trans-activating regulatory factors that mediate responses to exogenous agents capable of causing tissue damage, infection, inflammation, or tumorigenesis. We used network construction methods to analyze the genetic architecture of gene expression in normal mouse skin in a cross between tumor-susceptible Mus musculus and tumor-resistant Mus spretus. We demonstrate that gene expression motifs representing different constituent cell types within the skin such as hair follicle cells, haematopoietic cells, and melanocytes are under separate genetic control. Motifs associated with inflammation, epidermal barrier function and proliferation are differentially regulated in mice susceptible or resistant to tumor development. The intestinal stem cell marker Lgr5 is identified as a candidate master regulator of hair follicle gene expression, and the Vitamin D receptor (Vdr) links epidermal barrier function, inflammation, and tumor susceptibility.
Genetic architecture of mouse skin inflammation and tumour susceptibility.
No sample metadata fields
View Samples