refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 50 results
Sort by

Filters

Technology

Platform

accession-icon GSE24489
Effect of H11 Kinase/Hsp22 deletion in response to cardiac stress
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon

Description

The expression of the small molecular weight heat shock protein (Hsp) H11 kinase/Hsp22 (Hsp22) is restricted to a limited number of tissues, including the heart and skeletal muscle, both in rodents and in humans. We generated a mouse knockout (KO) model, and investigated the role of Hsp22 in regulating cardiac hypertrophy in response to pressure overload. We compared gene expression profiles between WT and KO mice in basal condition and three days pressure overload after transverse aortic constriction (TAC). These data illustrated a novel mechanism of Hsp22-related gene expression in response to cardiac stress.

Publication Title

H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE18446
BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The biology of chronic myeloid leukemia (CML)-stem cells is still incompletely understood. Therefore, we previously developed an inducible transgenic mouse model in which stem cell targeted induction of BCR-ABL expression leads to chronic phase CML-like disease. Here, we now demonstrate that the disease is transplantable using BCR-ABL positive LSK cells (lin-Sca-1+c-kit+). Interestingly, the phenotype is enhanced when unfractionated bone marrow (BM) cells are transplanted. However, neither progenitor cells (lin-Sca-1-c-kit+) nor mature granulocytes (CD11b+Gr-1+), or potential stem cell niche cells were able to transmit the disease or alter the phenotype. The phenotype was largely independent of BCR ABL priming prior to transplant. However, BCR-ABL abrogated the potential of LSK cells to induce full blown disease in secondary recipients. Subsequently, we found that BCR-ABL increased the fraction of multipotent progenitor cells (MPP) at the expense of long term HSC (LT-HSC) in the BM. Microarray analyses of LSK cells revealed that BCR-ABL alters the expression of genes involved in proliferation, survival, and hematopoietic development. Our results suggest that BCR-ABL induces differentiation of LT-HSC and decreases their self renewal capacity. Furthermore, reversion of BCR-ABL eradicates mature cells while leukemic stem cells persist, giving rise to relapsed CML upon re-induction of BCR-ABL.

Publication Title

BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14431
Simvastatin attenuates lung vascular leak and inflammation in a murine model of radiation-induced lung injury
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon

Description

Background: Microvascular injury and increased vascular leakage are prominent features of the radiation-induced lung injury (RILI) which follows cancerassociated thoracic irradiation. The mechanisms of RILI are incompletely understood and therapeutic strategies to limit RILI are currently unavailable. We established a murine model of radiation pneumonitis in order to assess mechanism-based therapies for RILI-induced inflammation and vascular barrier dysfunction. Based on prior studies, we investigated the therapeutic potential of simvastatin as a vascular barrier protective agent in RILI.

Publication Title

Simvastatin attenuates radiation-induced murine lung injury and dysregulated lung gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26100
Widespread targeted chromatin remodeling during the initial phase of somatic cell reprogramming
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reprogramming factor expression initiates widespread targeted chromatin remodeling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33024
Sequentially acting Sox transcription factors in neural lineage development
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Sequentially acting Sox transcription factors in neural lineage development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33061
Sequentially acting Sox transcription factors in neural lineage development [microarray]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

We report sequential binding but unique functions of different Sox transcription factors during distinct stages of neural differentiation

Publication Title

Sequentially acting Sox transcription factors in neural lineage development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12466
Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17985
Gene expression profile of Dicer-deficient oocytes
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Small RNAs, such as miRNAs and siRNAs, are involved in gene regulation in a variety of systems, including mouse oocytes. Dicer is a ribonuclease III enzyme essential for miRNA and siRNA biosynthesis. In an effort to uncover the function of small RNAs during oocyte growth, we specifically deleted Dicer in growing oocytes and analyzed the global pattern of gene expression in these Dicer-deficient oocytes.

Publication Title

MicroRNA activity is suppressed in mouse oocytes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE15268
Cell-context dependent Notch target genes
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Notch signaling regulates a variety of developmental cell fates decisions in a cell-context dependent manner. Although Notch signaling directly regulates transcription via the RBP-J/CSL DNA binding protein, little is known about the genes in the respective tissues that are directly activated by Notch.

Publication Title

Activated Notch1 target genes during embryonic cell differentiation depend on the cellular context and include lineage determinants and inhibitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23308
Effect of Mineralocorticoid Receptor deletion on glucocorticoid signalling in the macropahge
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Inappropriate excess of the steroid hormone aldosterone, which is a mineralocorticoid receptor (MR) agonist, is associated with increased inflammation and risk of cardiovascular disease. MR antagonists are cardioprotective and antiinflammatory in vivo, and evidence suggests that they mediate these effects in part by aldosterone- independent mechanisms.

Publication Title

Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact