This SuperSeries is composed of the SubSeries listed below.
Sequentially acting Sox transcription factors in neural lineage development.
Specimen part
View SamplesWe report sequential binding but unique functions of different Sox transcription factors during distinct stages of neural differentiation
Sequentially acting Sox transcription factors in neural lineage development.
Specimen part
View SamplesInappropriate excess of the steroid hormone aldosterone, which is a mineralocorticoid receptor (MR) agonist, is associated with increased inflammation and risk of cardiovascular disease. MR antagonists are cardioprotective and antiinflammatory in vivo, and evidence suggests that they mediate these effects in part by aldosterone- independent mechanisms.
Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice.
Sex, Specimen part, Treatment
View SamplesLong non-coding RNAs (lncRNAs) regulate diverse biological pathways. Unlike protein coding genes, where methods to comprehensibly study their functional roles in cellular systems are available, techniques to systematically investigate lncRNAs have largely remained unexplored. Here, we report a technology for combined Knockdown and Localization Analysis of Non-coding RNAs (c-KLAN) that merges phenotypic characterization and localization approaches to study lncRNAs. Using a library of endoribonuclease prepared short interfering RNAs (esiRNAs) coupled with a pipeline for synthesizing labeled riboprobes for RNA fluorescence in situ hybridization (FISH), we demonstrate the utility of c-KLAN by identifying a novel transcript Panct1 (Pluripotency associated non-coding transcript 1) that regulates embryonic stem cell identity. We postulate that c-KLAN should be generally useful in the discovery of lncRNAs implicated in various biological processes.
Combined RNAi and localization for functionally dissecting long noncoding RNAs.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells.
No sample metadata fields
View SamplesCytosine methylation is an epigenetic mark usually associated with gene repression. Despite a requirement for de novo DNA methylation for differentiation of embryonic stem cells, its role in somatic stem cells is unknown. Using conditional ablation, we show that loss of either, or both, Dnmt3a or Dnmt3b, progressively impedes hematopoietic stem cell (HSC) differentiation during serial in vivo passage. Concomitantly, HSC self-renewal is immensely augmented in absence of either Dnmt3, particularly Dnmt3a. Dnmt3-KO HSCs show upregulation of HSC multipotency genes and downregulation of early differentiation factors, and the differentiated progeny of Dnmt3-KO HSCs exhibit hypomethylation and incomplete repression of HSC-specific genes. HSCs lacking Dnmt3a manifest hyper-methylation of CpG islands and hypo-methylation of genes which are highly correlated with human hematologic malignancies. These data establish that aberrant DNA methylation has direct pathologic consequences for somatic stem cell development, leading to inefficient differentiation and maintenance of a self-renewal program.
Dnmt3a is essential for hematopoietic stem cell differentiation.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner.
Specimen part
View SamplesThe effect of CTCFL mutation on the transcriptional program in testes
The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reprogramming factor expression initiates widespread targeted chromatin remodeling.
Specimen part
View SamplesSmall RNAs, such as miRNAs and siRNAs, are involved in gene regulation in a variety of systems, including mouse oocytes. Dicer is a ribonuclease III enzyme essential for miRNA and siRNA biosynthesis. In an effort to uncover the function of small RNAs during oocyte growth, we specifically deleted Dicer in growing oocytes and analyzed the global pattern of gene expression in these Dicer-deficient oocytes.
MicroRNA activity is suppressed in mouse oocytes.
Sex, Specimen part
View Samples