Areas and layers of the cerebral cortex are specified by genetic programs that are initiated in progenitor cells and then, implemented in postmitotic neurons. Here, we report that Tbr1, a transcription factor expressed in postmitotic projection neurons, exerts positive and negative control over both regional (areal) and laminar identity. Tbr1 null mice exhibited profound defects of frontal cortex and layer 6 differentiation, as indicated by down-regulation of gene-expression markers such as Bcl6 and Cdh9. Conversely, genes that implement caudal cortex and layer 5 identity, such as Bhlhb5 and Fezf2, were up-regulated in Tbr1 mutants. Tbr1 implements frontal identity in part by direct promoter binding and activation of Auts2, a frontal cortex gene implicated in autism. Tbr1 regulates laminar identity in part by downstream activation or maintenance of Sox5, an important transcription factor controlling neuronal migration and corticofugal axon projections. Similar to Sox5 mutants, Tbr1 mutants exhibit ectopic axon projections to the hypothalamus and cerebral peduncle. Together, our findings show that Tbr1 coordinately regulates regional and laminar identity of postmitotic cortical neurons.
Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex.
Specimen part
View SamplesLigand-mediated activation of the nuclear hormone receptor PPAR gamma lowers blood pressure and improves glucose tolerance in humans. Two naturally occurring mutations (P467L, V290M) in the ligand binding domain of PPAR gamma have been described in humans that lead to severe insulin resistance and hypertension. Experimental evidence suggests that these mutant versions of PPAR gamma act in a dominant negative fashion. To better understand the molecular mechanisms underlying PPAR gamma action in the vasculature, we determined the gene expression patterns in mouse aorta in response to activation or interference with the PPAR gamma signaling pathway.
Bioinformatic analysis of gene sets regulated by ligand-activated and dominant-negative peroxisome proliferator-activated receptor gamma in mouse aorta.
No sample metadata fields
View SamplesThe liver is frequently challenged by surgery-induced metabolic overload, viruses, or toxins, which induce the formation of reactive oxygen species. To determine the effect of oxidative stress on liver regeneration and to identify the underlying signalling pathways, we studied liver repair in mice lacking the Nrf2 transcription factor. In these animals, expression of several cytoprotective enzymes was reduced in hepatocytes, resulting in oxidative stress. As a consequence, tissue damage was aggravated, and liver regeneration after partial hepatectomy was delayed.
Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance.
Specimen part
View SamplesMethylazoxymethanol (MAM), the genotoxic metabolite of the cycad azoxyglucoside cycasin, induces genetic alterations in bacteria, yeast, plants, insects and mammalian cells, but adult nerve cells are thought to be unaffected. We show that the brains of young adult mice treated with a single systemic dose of MAM display DNA damage (O6-methylguanine lesions) that peaks at 48 hours and decline to near-normal levels at 7 days post-treatment. By contrast, at this time, MAM-treated mice lacking the gene encoding the DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT), showed persistent O6-methylguanine DNA damage. The DNA damage was linked to cell-signaling pathways that are perturbed in cancer and neurodegenerative disease. These data are consistent with the established carcinogenic and developmental neurotoxic properties of MAM in rodents, and they support the proposal that cancer and neurodegeneration share common signal transduction pathways. They also strengthen the hypothesis that early life exposure to the MAM glucoside cycasin has an etiological association with a declining, prototypical neurodegenerative disease seen in Guam, Japan, and New Guinea populations that formerly used the neurotoxic cycad plant for medicine and/or food. Exposure to environmental genotoxins may have relevance to the etiology of related tauopathies, notably, Alzheimers disease, as well as cancer.
The cycad genotoxin MAM modulates brain cellular pathways involved in neurodegenerative disease and cancer in a DNA damage-linked manner.
Sex, Specimen part, Time
View SamplesThis study revealed pathogenic role of pre-BCR-independent SYK activation in high-risk B-ALL.
Therapeutic potential of spleen tyrosine kinase inhibition for treating high-risk precursor B cell acute lymphoblastic leukemia.
Specimen part
View SamplesHearts of Myh6-MeCP2 transgenic mice and wildtype littermates were rapidly dissected and flash frozen.
Adrenergic Repression of the Epigenetic Reader MeCP2 Facilitates Cardiac Adaptation in Chronic Heart Failure.
Specimen part
View Samples