Quaking are RNA binding proteins, which are known to regulate the expression of different genes at the post-transcriptional level. Genetic interference with quaking a (qkia) and quaking c (qkic) leads to major myofibril defects during zebrafish development, without affecting early muscle differentiation. In order to understand how qkia and qkic jointly regulate myofibril formation, we performed a comparative analysis of the transcriptome of qkia/qkic (qkia mutant injected with qkic morpholino) versus control embryos. We show that Quaking activity is required for accumulation of the muscle-specific tropomyosin 3 transcript, tpm3.1. Whereas interference with tmp3.1 function disrupts myofibril formation, reintroducing tpm3.1 transcripts into embryos with reduced Quaking activity can restore structured myofibrils. Thus, we identify tropomyosin as an essential component in the process of myofibril formation and as a relay downstream of the regulator proteins Quaking. Overall design: Transcriptome of control versus qkia/qkic embryos at 24-26hpf. Biological triplicate were prepared for both condition (3x2 samples).
Quaking RNA-Binding Proteins Control Early Myofibril Formation by Modulating Tropomyosin.
No sample metadata fields
View SamplesGenetically targeted mice with deficiency for the A2BAR show increased susceptibility to acute myocardial ischemia and are not protected by IP, a powerful strategy for cardioprotection, where short and repeated episodes of ischemia and reperfusion prior to myocardial infarction result in attenuation of infarct size.
Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia.
Sex, Age
View SamplesIn this study, we performed the gene expression analysis of the Normal, Diabetic and AAT treated NOD mice to elucidate the transcriptional changes induced by AAT. This will assist in identifying the biological processes / pathways involved in curative mechanism of AAT.
Curative and beta cell regenerative effects of alpha1-antitrypsin treatment in autoimmune diabetic NOD mice.
No sample metadata fields
View SamplesThe different stages of the optic fissure can be clearly visualized by making sagittal sections through the mouse eye during early development which represent the optic fissure at open (E10.5), closing (E11.5) and fused (E12.5) states. Laser capture microdissection (LCM) was employed to dissect tissue from the margins of the optic fissure consisting of the outer (presumptive RPE) and inner (presumptive neurosensory retina) layers of the retina.
Expression profiling during ocular development identifies 2 Nlz genes with a critical role in optic fissure closure.
No sample metadata fields
View SamplesScaffold proteins regulate intracellular MAP kinase signaling by providing critical spatial and temporal specificity. We have shown previously that the scaffold protein MEK1 partner (MP1) is localized to late endosomes by the adaptor protein p14. Using conditional gene disruption of p14 in livers of mice we analysed protein and transcript signatures in tissue samples. Further biological network analysis predicted that the differentially expressed transcripts and proteins are involved in cell cycle progression and regulation of cellular proliferation. Although some of the here identified signatures were previously linked to phospho-ERK activity, most of them were novel targets of late endosomal p14/MP1/MEK/ERK signaling module. Finally, the proliferation defect was confirmed in a chemically induced liver regeneration model in p14 liver knock-out mice.
Comprehensive proteomic and transcriptomic characterization of hepatic expression signatures affected in p14 liver conditional knockout mice.
Specimen part
View SamplesRenal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e. distal convoluted tubule (DCT) and connecting tubule (CNT) and, the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, alphaENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.
Molecular clock is involved in predictive circadian adjustment of renal function.
Sex, Specimen part
View SamplesThe functioning of a specific tissue depends on the expression pattern of the different genes. We used microarrays to compare gene expression across different murine tissues, to get a better understanding in the expression pattern and functioning of the different tissues. With this analysis, we were not only able to identify genes that were specifically expressed in a spicific tissue but, as important, we also identified genes that were specifically repressed in a tissue, compared to al the other analysed tissues.
Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation.
Sex, Specimen part
View SamplesTranscriptome analysis comparing naive, protective and non-protective spleen memory CD8 T lymphocytes were conducted to identify key functions associated with memory CD8-mediated immune protection. Memory CD8 T cells generated in response to influenza or vaccinia infection (Flu-memory and VV-memory) were compared to inflammatory memory cells (TIM) that were generated by peptide in inflammatory context. Gene expression analysis was performed on quiescent and re-stimulated CD8 T cells.
Immune signatures of protective spleen memory CD8 T cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging.
Sex, Age
View SamplesAging is associated with major nuclear changes affecting genomic integrity and gene expression. Here we compare the gene expression profiles in the neocortex of young (5 months old) and old (30 months old) B6xC3 F1 mice.
SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging.
Sex, Age
View Samples