This SuperSeries is composed of the SubSeries listed below.
The impact of microRNAs on protein output.
No sample metadata fields
View SamplesThis array analysis is to study the regulation of target messages expression in in vitro cultured murine neutrophils versus miR-223 null neutrophils. Culture media was SILAC-IMDM for MS analysis.
The impact of microRNAs on protein output.
No sample metadata fields
View SamplesThis array analysis is to study the regulation of target messages expression in murine neutrophils versus miR-223 null neutrophils.
The impact of microRNAs on protein output.
No sample metadata fields
View SamplesResiquimod is a nucleoside analog belonging to the imidazoquinoline family of compounds which is known to signal through Toll-like receptor 7. Resiquimod treatment has been demonstrated to inhibit the development of allergen induced asthma in experimental models. Despite this demonstrated effectiveness, little is known about the molecular events responsible for this effect. The aim of the present study was to elucidate the molecular processes which were altered following resiquimod treatment and antigen challenge in a mouse model of allergic asthma. Employing microarray analysis, we have characterized the asthmatic transcriptome of the murine lung and determined that it includes genes involved in: the control of cell cycle progression, airway remodelling, the complement and coagulation cascades, and chemokine signalling. We have demonstrated that systemic resiquimod administration resulted in the recruitment of NK cells to the lungs of the mice, although no causal relationship between NK cell recruitment and treatment efficacy was found. Furthermore, results of our studies demonstrated that resiquimod treatment resulted in the normalization of the expression of genes involved with airway remodelling and chemokine signalling, and in the modulation of the expression of genes including cytokines and chemokines, adhesion molecules, and B-cell related genes, involved in several aspects of immune function and antigen presentation. Overall, our findings identified several genes, important in the development of asthma pathology, that were normalized following resiquimod treatment thus improving our understanding of the molecular consequences of resiquimod treatment in the lung milieu.
Modulation of the allergic asthma transcriptome following resiquimod treatment.
No sample metadata fields
View SamplesBarrier integrity is central to the maintenance of a healthy immunological homeostasis. Impaired skin barrier function is linked with enhanced allergen sensitization and the development of diseases such as atopic dermatitis (AD), which can precede the development of other allergic diseases such as food allergies and asthma. Epidemiological evidence indicates that children suffering from allergies have lower levels of dietary fibre-derived short-chain fatty acids (SCFA). Using an experimental model of AD, we report that a fermentable fibre-rich diet alleviates AD severity and systemic allergen sensitization. The gut-skin axis underpins this phenomenon through SCFA, which strengthen skin barrier integrity by altering mitochondrial metabolism of epidermal keratinocytes. SCFA promote keratinocyte differentiation and the production of key structural lipids, resulting in enhanced barrier function. Our results demonstrate that dietary fibre and SCFA mitigate AD by improving barrier integrity, ultimately limiting early systemic allergen sensitization and development of disease. Overall design: 16 Samples, 4 groups in duplicate
Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation.
Genotype, Disease, Disease stage, Treatment, Subject
View SamplesPurpose: Investigate the molecular determinants of retinal regeneration in adult vertebrates by analyzing the gene expression profiles of control and post-lesion retina of adult zebrafish, a system that regenerates following injury. Methods: Gene expression profiles of zebrafish retina and brain were determined with DNA microarray, RT-PCR, and real-time quantitative PCR analyses. Damaged retinas and their corresponding controls were analyzed 2-5 days post-lesion (acute injury condition) or 14 d post-lesion (cell regeneration condition). Results: Expected similarities and differences in the gene expression profile of zebrafish retina and brain were observed, confirming the applicability of the gene expression techniques. Mechanical lesion of retina triggered significant, time-dependent changes in retinal gene expression. The induced transcriptional changes were consistent with cellular phenomena known to occur, in a time-dependent manner, subsequent to retinal lesion, including cell cycle progression, axonal regeneration, and regenerative cytogenesis. Conclusions: The results indicate that retinal regeneration in adult zebrafish involves a complex set of induced, targeted changes in gene transcription, and suggest that these molecular changes underlie the ability of the adult vertebrate retina to regenerate. Keywords: time course; injury response; cellular correlation Control brain and retina (unlesioned); Control and lesioned retina (matched animals, at least n = 8 for each condition).
Gene expression profiles of intact and regenerating zebrafish retina.
Specimen part, Subject, Time
View SamplesData present the expression analysis of different mouse ES cell line with altered expression of GTF2I.
TFII-I regulates target genes in the PI-3K and TGF-β signaling pathways through a novel DNA binding motif.
Specimen part
View SamplesThis study compared gene expression in murine bcr-abl positive acute lymphoblastic leukemia cells in vivo in allogeneic BMT recipients compared to syngneneic BMT recipients.
Differential gene expression in acute lymphoblastic leukemia cells surviving allogeneic transplant.
Specimen part
View SamplesThe Runx genes are important in development and cancer, where they can act either as oncogenes or tumour supressors. We compared the effects of ectopic Runx expression in established fibroblasts, where all three genes produce an indistinguishable phenotype entailing epithelioid morphology and increased cell survival under stress conditions. Gene array analysis revealed a strongly overlapping transcriptional signature, with no examples of opposing regulation of the same target gene. A common set of 50 highly regulated genes was identified after further filtering on regulation by inducible RUNX1-ER. This set revealed a strong bias toward genes with annotated roles in cancer and development, and a preponderance of targets encoding extracellular or surface proteins reflecting the marked effects of Runx on cell adhesion.
Gene array analysis reveals a common Runx transcriptional programme controlling cell adhesion and survival.
No sample metadata fields
View SamplesIn order to understand how biochemical and genetic differences correlate with treatment response, we measured depressive-like behavior, gene expression and the levels of thirty-six neurobiochemical analytes across a panel of genetically-diverse mouse inbred lines after chronic treatment with vehicle or fluoxetine. Neurobiochemical markers were chosen based on their putative molecular function within pathways proposed to underlie depression, which include neuronal transmission, HPA-axis regulation, and neuroimmune processes. The goal of this study is to establish genetic and biochemical biomarkers that can predict treatment response and to propose a molecular pathway that is critical in mediating anti-depressant response.
Evaluating genetic markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains.
Sex, Specimen part
View Samples