XEN cells are derived from the primitive endoderm of mouse blastocysts. In culture and in chimeras they exhibit properties of parietal endoderm. However, BMP signaling promotes XEN cells to form an epithelium and differentiate into visceral endoderm (VE). Of the several different subtypes of VE described, BMP induces a subtype that is most similar to the VE adjacent to the trophoblast-derived extraembryonic ectoderm.
BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Age- and pregnancy-associated DNA methylation changes in mammary epithelial cells.
Sex, Age, Specimen part
View SamplesGlobal energy balance in mammals is controlled by the actions of circulating hormones that coordinate fuel production and utilization in metabolically active tissues. Bone-derived osteocalcin, in its undercarboxylated, hormonal form, regulates fat deposition and is a potent insulin secretagogue. Here, we show that insulin receptor (IR) signaling in osteoblasts controls osteoblast development and osteocalcin expression by suppressing the Runx2 inhibitor Twist-2. Mice lacking IR in osteoblasts have low circulating undercarboxylated osteocalcin and reduced bone acquisition due to decreased bone formation and deficient numbers of osteoblasts. With age, these mice develop marked peripheral adiposity and hyperglycemia accompanied by severe glucose intolerance and insulin resistance. The metabolic abnormalities in these mice are improved by infusion of exogenous under-carboxylated osteocalcin. These results indicate the existence of a bone-pancreas endocrine loop through which insulin signaling in the osteoblast ensures osteoblast differentiation and stimulates osteocalcin production, which in turn regulates insulin sensitivity and pancreatic insulin secretion to control glucose homeostasis.
Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition.
Specimen part, Time
View SamplesThe capacity of the hematopoietic system to promptly respond to peripheral demands relies on adequate pools of progenitors able to transiently proliferate and differentiate in a regulated manner. However, little is known about factors that may restrain progenitor maturation to maintain their reservoirs. In addition to a profound defect in hematopoietic stem cell (HSC) self-renewal, conditional knockout mice for the Pbx1 proto-oncogene have a significant reduction in lineage-restricted progenitors, including common myeloid progenitors (CMPs) and, to a lesser extent, granulocyte-monocyte progenitors (GMPs).
Pbx1 restrains myeloid maturation while preserving lymphoid potential in hematopoietic progenitors.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots.
Sex, Age, Specimen part
View SamplesThe genetic programs that promote retention of self-renewing leukemia stem cells (LSCs) at the apex of cellular hierarchies in acute myeloid leukemia (AML) are not known. In a mouse model of human AML, LSCs exhibit variable frequencies that correlate with the initiating MLL oncogene and are maintained in a self-renewing state by a transcriptional sub-program more akin to that of embryonic stem cells (ESCs) than adult stem cells. The transcription/chromatin regulatory factors Myb, Hmgb3 and Cbx5 are critical components of the program and suffice for Hoxa/Meis-independent immortalization of myeloid progenitors when co-expressed, establishing the cooperative and essential role of an ESC-like LSC maintenance program ancillary to the leukemia initiating MLL/Hox/Meis program. Enriched expression of LSC maintenance and ESC-like program genes in normal myeloid progenitors and poor prognosis human malignancies links the frequency of aberrantly self-renewing progenitor-like cancer stem cells to prognosis in human cancer.
Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.
No sample metadata fields
View SamplesNormal myeloid lineage cell populations (C57BL/6 mice, aged 4-10 weeks, male or female) with three distinct immunophenotypes were prospectively isolated and characterized. In preparation for FACS sorting, bone marrow cells were separated into c-kit+ and c-kit- fractions using an AutoMACS device. C-kit+ cells were further fractionated based on Gr1 and Mac1 expression, and absence of lineage antigen expression (B220, TER119, CD3, CD4, CD8 and IL7R), by cell sorting. C-kit+ Gr1+ Mac1lo/- and c-kit+ Gr1+ Mac1+ displayed cytologic features of undifferentiated hematopoietic cells or myeloblasts, whereas c-kit- Gr1+ Mac1+ cells were mature neutrophils.
Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.
No sample metadata fields
View SamplesLeukemia cells from mice with MLL-AF10 AML were fractionated into separate sub-populations on the basis of c-kit expression, which correlates with MLL LSC frequency (Somervaille and Cleary, 2006). The sorted AML sub-populations exhibited substantial differences in their frequencies of AML CFCs/LSCs (mean 14-fold) and morphologic features, consistent with a leukemia cell hierarchy with maturation through to terminally differentiated neutrophils.
Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.
No sample metadata fields
View SamplesE-FABP expression in keratinocytes increase interferons, in particualur IFNlamda, expression, which activate P53, a critical tumor suppessor, to inhibit or prevent chemical-induced skin tumorigenesis.
Epidermal FABP Prevents Chemical-Induced Skin Tumorigenesis by Regulation of TPA-Induced IFN/p53/SOX2 Pathway in Keratinocytes.
Specimen part
View SamplesEphB receptors regulate the proliferation and positioning of intestinal stem and progenitor cells. In addition, they can act as tumor promoters for adenoma development, but suppress progression to invasive carcinoma. Here we used imatinib to abrogate Abl kinase activity in ApcMin/+ mice and in mice with LGR5+ stem cells genetically targeted for APC. This treatment inhibited the tumor-promoting effects of EphB signaling without attenuating EphB-mediated tumor suppression, demonstrating the role of EphB signaling in intestinal tumor initiation. The investigated treatment regimen extended the lifespan of ApcMin/+ mice, and reduced cell proliferation in cultured slices of adenomas from FAP patients. These findings connect the EphB signaling pathway to the regulation of intestinal adenoma initiation via Abl kinase. Our findings may have clinical implications for pharmacological therapy against adenoma formation and cancer progression in patients predisposed to develop colon cancer.
An EphB-Abl signaling pathway is associated with intestinal tumor initiation and growth.
Specimen part
View Samples