Exposure to high levels of arsenic in drinking water is associated with several types of cancers including lung, bladder and skin, as well as vascular disease and diabetes. Drinking water standards are based primarily on epidemiology and extrapolation from higher dose experiments, rather than measurements of phenotypic changes associated with chronic exposure to levels of arsenic similar to the current standard of 10ppb, and little is known about the difference between arsenic in food as opposed to arsenic in water. Measurement of phenotypic changes at low doses may be confounded by the effect of laboratory diet, in part because of trace amounts of arsenic in standard laboratory chows, but also because of broad metabolic changes in response to the chow itself. Finally, this series contrasts 8hr, 1mg/kg injected arsenic with the various chronic exposures, and also contrasts the acute effects of arsenic, dexamethasone or their combination. Male C57BL/6 mice were fed on two commercially available laboratory diets (LRD-5001 and AIN-76A) were chronically exposed, through drinking water or food, to environmentally relevant concentrations of sodium arsenite, or acutely exposed to dexamethasone.
Laboratory diet profoundly alters gene expression and confounds genomic analysis in mouse liver and lung.
No sample metadata fields
View SamplesExposure to high levels of arsenic in drinking water is associated with several types of cancers including lung, bladder and skin, as well as vascular disease and diabetes. Drinking water standards are based primarily on epidemiology and extrapolation from higher dose experiments, rather than measurements of phenotypic changes associated with chronic exposure to levels of arsenic similar to the current standard of 10ppb, and little is known about the difference between arsenic in food as opposed to arsenic in water. Measurement of phenotypic changes at low doses may be confounded by the effect of laboratory diet, in part because of trace amounts of arsenic in standard laboratory chows, but also because of broad metabolic changes in response to the chow itself. Finally, this series contrasts 8hr, 1mg/kg injected arsenic with the various chronic exposures, and also contrasts the acute effects of arsenic, dexamethasone or their combination. Male C57BL/6 mice were fed on two commercially available laboratory diets (LRD-5001 and AIN-76A) were chronically exposed, through drinking water or food, to environmentally relevant concentrations of sodium arsenite, or acutely exposed to dexamethasone.
Chronic exposure to arsenic in the drinking water alters the expression of immune response genes in mouse lung.
No sample metadata fields
View SamplesWe have identified loss of deiminated MA-Brent-1 (an RNA and export binding protein) in the retinal ganglion cells (RGCs) in multiple sclerosis and in glaucoma eyes compared to normal controls. Deimination refers to posttranslational modification of protein bound arginine (not free arginine) in citrulline. Our preliminary studies suggest binding of different repertoire of RNA by non-deiminated and deiminated MA-Brent-1. In vitro, in neurites of cultured RGCs and hippocampal neurons, the select mRNA translation is enhanced by addition of deiminated but not non-deiminated MA-Brent-1. These observations suggest that lack of deiminated MA-Brent-1 has consequences for protein synthesis, remodeling and plasticity of RGCs/neurons. Identification of RNA species bound by deiminated and non-deiminated MA-Brent-1 will enable us there further verification and determining the role that deimination plays in biological function of MA-Brent-1 in multiple sclerosis and glaucoma. To summarize identification of RNA species bound by deiminated and non deiminated MA-Brent-1 will enable us to gain further insight into role of deimination in the overall disease process.
The role of deimination in ATP5b mRNA transport in a transgenic mouse model of multiple sclerosis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Stem cells for murine interstitial cells of cajal suppress cellular immunity and colitis via prostaglandin E2 secretion.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia.
Specimen part
View SamplesWe used microarrays to detail the global programme of gene expression in response to Influenza A (PR8) infection
Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia.
Specimen part
View SamplesDisruption of protein folding in the endoplasmic reticulum triggers the Unfolded Protein Response (UPR), a transcriptional and translational control network designed to restore protein homeostasis. Central to the UPR is PERK phosphorylation of the alpha subunit of eIF2 (eIF2~P), which represses global translation coincident with preferential translation of mRNAs, such as ATF4 and CHOP, that serve to implement the UPR transcriptional regulation. In this study, we used sucrose gradient ultracentrifugation and a genome-wide microarray approach to measure changes in mRNA translation during ER stress. Our analysis suggests that translational efficiencies vary across a broad range during ER stress, with the majority of transcripts being either repressed or resistant to eIF2~P, while a notable cohort of key regulators are subject to preferential translation. From this latter group, we identify IBTKa as being subject to both translation and transcriptional induction during eIF2~P in both cell lines and a mouse model of ER stress. Translational regulation of IBTKalpha mRNA involves the stress-induced relief of two inhibitory uORFs in the 5'-leader of the transcript. Depletion of IBTKalpha by shRNA reduced viability of cultured cells coincident with increased caspase 3/7 cleavage, suggesting that IBTKalpha is a key regulator in determining cell fate during the UPR.
Selective mRNA translation during eIF2 phosphorylation induces expression of IBTKα.
Specimen part
View SamplesStress induces undifferentiated stem cells to differentiate in a way that looks like normal differentiation
Hyperosmolar stress induces global mRNA responses in placental trophoblast stem cells that emulate early post-implantation differentiation.
No sample metadata fields
View SamplesNOTCH proteins regulate signaling pathways involved in cellular differentiation, proliferation and death. Overactive Notch signaling as been observed in numerous cancers and has been extensively studied in the context of T-cell acute lymphoblastic leukemia (T-ALL) where more than 50% of pateints harbour mutant NOTCH1. Small molecule modulators of these proteins would be important for understanding the role of NOTCH proteins in malignant and normal biological processes.
Direct inhibition of the NOTCH transcription factor complex.
Specimen part, Disease, Disease stage
View SamplesIn several models of obesity-induced diabetes, increased lipid accumulation in the liver has been associated with decreased diabetes susceptibility. For instance, deficiency in leptin receptor (db/db) leads to hyperphagia and obesity in both C57BL/6 and C57BLKS mice but, only on the C57BLKS background do the mice develop beta-cell loss leading to severe diabetes while C57BL/6 mice are relatively resistant. Liver triglyceride levels in the resistant C57BL/6 mice are 3 to 4 fold higher than in C57BLKS.
Systems genetics of susceptibility to obesity-induced diabetes in mice.
Sex, Age
View Samples