Astrocytes react to brain injury in a heterogeneous manner with only a subset resuming proliferation and acquiring in vitro neural stem cell properties. In order to identify novel regulators of this astrocyte subset, we performed a genome-wide expression analysis of reactive astrocytes isolated 5 days after stab wound injury from the adult mouse cerebral cortex. The expression pattern was compared with astrocytes from normal cortex and adult neural stem cells isolated from the sub-ependymal zone (GSE18765). These comparisons revealed a set of genes up-regulated both in neurogenic neural stem cells and reactive astrocytes, including the lectins Galectin-1 and -3. These results, as well as the pattern of Galectin expression in the lesioned brain, led us to examine the functional significance of these lectins in brains of Galectin-1/3 double-knockout mice.
Astrocyte reactivity after brain injury-: The role of galectins 1 and 3.
Sex, Specimen part, Treatment, Time
View SamplesMicroRNAs (miRNAs) are short noncoding RNA molecules regulating the expression of mRNAs. Target identification of miRNAs is computationally difficult due to the relatively low homology between miRNAs and their targets. We present here an experimental approach to target identification where the cartilage-specific miR-140 was overexpressed and silenced in cells it is normally expressed in separate experiments. Expression of mRNAs was profiled in both experiments and the intersection of mRNAs repressed by miR-140 overexpression and derepressed by silencing of miR-140 was identified. The intersection contained only 49 genes, although both treatments affected the accumulation of hundreds of mRNAs. These 49 genes showed a very strong enrichment for the miR-140 seed sequence implying that the approach is efficient and specific. 21 of these 49 genes were predicted to be direct targets based on the presence of the seed sequence. Interestingly, none of these were predicted by the published target prediction methods we used. One of the potential target mRNAs, Cxcl12, was experimentally validated by Northern blot analysis and a luciferase reporter assay.
Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.
Specimen part, Treatment
View SamplesDespite the high toxicity, alkylating agents are still at the forefront of several clinical protocols used to treat cancers. In this study, we investigated the mechanisms underlying alkylation damage responses, aiming to identify novel strategies to augment alkylating therapy efficacy. In this pursuit, we compared gene expression profiles of evolutionary distant cell types (D. melanogaster Kc167 cells, mouse embryonic fibroblasts and human cancer cells) in response to the alkylating agent methyl-methanesulfonate (MMS). We found that many responses to alkylation damage are conserved across species independent on their tumor/normal phenotypes. Key amongst these observations was the protective role of NRF2-induced GSH production primarily regulating GSH pools essential for MMS detoxification but also controlling activation of unfolded protein response (UPR) needed for mounting survival responses across species. An interesting finding emerged from a non-conserved mammalian-specific induction of mitogen activated protein kinase (MAPK)-dependent inflammatory responses following alkylation, which was not directly related to cell survival but stimulated the production of a pro-inflammatory, invasive and angiogenic secretome in cancer cells. Appropriate blocking of this inflammatory component blocked the invasive phenotype and angiogenesis in vitro and facilitated a controlled tumor killing by alkylation in vivo through inhibition of alkylation-induced angiogenic response, and induction of tumor healing.
Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.
Specimen part, Treatment
View SamplesCalorie restriction (CR) is a dietary intervention that extends lifespan and healthspan in a variety of organisms. CR improves mitochondrial energy production, fuel oxidation and reactive oxygen species scavenging in skeletal muscle and other tissues, and these processes are thought to be critical to the benefits of CR. PGC-1a is a transcriptional coactivator that regulates mitochondrial function and is induced by CR. Consequently, many of the mitochondrial and metabolic benefits of CR are attributed to increased PGC-1a activity. To test this model for the first time, we examined the metabolic and mitochondrial response to CR in mice lacking skeletal muscle PGC-1a (MKO). Surprisingly, MKO mice demonstrated a normal improvement in glucose homeostasis in response to CR, indicating that skeletal muscle PGC-1a is dispensable for the whole-body benefits of CR. In contrast, gene expression profiling and electron microscopy demonstrated that PGC-1a is required for the full CR-induced increases in mitochondrial gene expression and mitochondrial density in skeletal muscle. These results demonstrate that PGC-1a is a major regulator of the mitochondrial response to CR in skeletal muscle, but surprisingly show that neither PGC-1a nor mitochondrial biogenesis in skeletal muscle are required for the metabolic benefits of CR.
Skeletal muscle transcriptional coactivator PGC-1α mediates mitochondrial, but not metabolic, changes during calorie restriction.
Specimen part
View SamplesTumor cells exhibit aberrant metabolism characterized by high glycolysis even in the presence of oxygen. This metabolic reprogramming, known as the Warburg effect, provides tumor cells with the substrates and redox potential required for the generation of biomass. Here, we show that the mitochondrial NAD-dependent deacetylase SIRT3 is a crucial regulator of the Warburg effect. SIRT3 loss promotes a metabolic profile consistent with high glycolysis required for anabolic processes in vivo and in vitro. Mechanistically, SIRT3 mediates metabolic reprogramming independently of mitochondrial oxidative metabolism and through HIF1a, a transcription factor that controls expression of key glycolytic enzymes. SIRT3 loss increases reactive oxygen species production, resulting in enhanced HIF1a stabilization. Strikingly, SIRT3 is deleted in 40% of human breast cancers, and its loss correlates with the upregulation of HIF1a target genes. Finally, we find that SIRT3 overexpression directly represses the Warburg effect in breast cancer cells. In sum, we identify SIRT3 as a regulator of HIF1a and a suppressor of the Warburg effect.
SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization.
Specimen part
View SamplesWe investigated the role of mTORC1 in murine hematopoiesis by conditionally deleting the Raptor gene in murine hematopoietic stem cells. We observed mutliple alterations evoked by Raptor loss in hematopoiesis and profiled gene-expression alterations induced by raptor loss in Flt3-Lin-Sca1+cKit+ hematopoietic stem and progenitor enriched cell populations, 5 weeks post Raptor deletion.
mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis.
Specimen part
View SamplesHigh-fat diets are associated with increased obesity and metabolic disease in mice and humans. Here we used analysis of variance (ANOVA) to scrutinize a microarray data set consisting of 10 inbred strains of mice from both sexes fed atherogenic high-fat and control chow diets. An overall F-test was applied to the 40 unique groups of strain-diet-sex to identify 15,288 genes with altered transcription. Bootstrapping k-means clustering separated these changes into four strain-dependent expression patterns, including two sex-related profiles and two diet-related profiles. Sex-induced effects correspond to secretion (males) or fat and energy metabolism (females), whereas diet-induced changes relate to neurological processes (chow) or immune response (high-fat). The full set of pairwise contrasts for differences between strains within sex (90 different statistical tests) uncovered 32,379 total changes. These differences were unevenly distributed across strains and between sexes, indicating that strain-specific responses to high-fat diet differ between sexes. Correlations between expression levels and 8 obesity-related traits identified 5,274 associations between transcript abundance and measured phenotypic endpoints. From this number, 2,678 genes are positively correlated with total cholesterol levels and associate with immune-related categories while 2,596 genes are negatively correlated with cholesterol and connect to cholesterol synthesis.
Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci.
Sex
View SamplesC2C12 cells are mouse skeletal muscle cells. These cells were transfected with shRNA against FoxO1, FoxO3, and FoxO4. FoxO1, FoxO3, and FoxO4 are the known paralogues expressed in this cell line.
Codependent activators direct myoblast-specific MyoD transcription.
No sample metadata fields
View SamplesThe perinatal period and early infancy are considered critical periods for lung development, and adversities during this period are believed to impact lung health in adulthood.The main factors affecting postnatal lung development and growth include environmental exposures, cigarette smoking, (viral) infections, allergic sensitization, and asthma.Therefore, we hypothesized that concomitant exposure in the early postnatal period in mice would cause more profound alterations in lung alveolarization and growth in adult life, quantified by stereology, and differently modulate lung inflammation and gene expression than either insult alone.Five-day-old male mice were immunized intraperitoneally (i.p.) with 10 µg of ovalbumin (OVA). This procedure was repeated at the 7th day of life, animals from the control group received i.p. injection of PBS only. Mice were exposed to either ambient PM2.5 or filtered air from the 5th to the 39th day of life, using an ambient particle concentrator developed at the Harvard School of Public Health (HAPC).Total RNA of lung samples (n=3 animals per group) was extracted using RNeasy Mini Kit (Qiagen, Hilden, Germany), according to manufacturer's instructions. The microarray analysis was performed using three RNA samples for each studied group (Control, OVA, PM2.5, OVA+PM2.5), totalizing 12 samples. One hundred nanograms of total RNA was amplified with the Ambion WT Expression Kit and hybridized onto the GeneChip Mouse Gene 2.0 ST Array (Thermo Scientific, Massachusetts, USA), following manufacturer’s protocol. The comparison between the control and OVA group exhibit 32 DEGs (28 up-regulated and 4 down-regulated), between the control and PM2.5 group had 6 DEGs (4 up and 2 down) and between the control and OVA+PM2.5 group had 5 DEGs (4 up and 1 down). The comparison between OVA and PM2.5 group showed 97 DEGS (22 up and 75 down) and between OVA and OVA+PM2.5 group had 7 DEGs (4 up and 3 down). Finally, the comparison between the PM2.5 and OVA+PM2.5 group exhibit 34 DEGs (2 up and 32 down).Our experimental data provide pathological support for the hypothesis that either allergic or environmental insults in early life have permanent adverse consequences to lung growth. In addition, combined insults were associated with the development of a COPD-like phenotype in young adult mice.
Allergic sensitization and exposure to ambient air pollution beginning early in life lead to a COPD-like phenotype in young adult mice.
Treatment
View Samples