We assessed the impact of glucose transporter Glut2 gene inactivation in adult mouse liver (LG2KO mice). This suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditure, and insulin sensitivity were identical in LG2KO and control mice. Glucose tolerance was normal early after Glut2 inactivation but intolerance developed at later time. This was caused by progressive impairment of glucose-stimulated insulin secretion even though beta-cell mass and insulin content remained normal. Liver transcript profiling revealed a coordinate down-regulation of cholesterol biosynthesis genes in LG2KO mice. This was associated with reduced hepatic cholesterol in fasted mice and a 30 percent reduction in bile acid production. We showed that chronic bile acids or FXR agonist treatment of primary islets increases glucose-stimulated insulin secretion, an effect not seen in islets from fxr-/- mice. Collectively, our data show that glucose sensing by the liver controls beta-cell glucose competence, through a mechanism that likely depends on bile acid production and action on beta-cells.
Hepatic glucose sensing is required to preserve β cell glucose competence.
Specimen part
View SamplesBackground: MicroRNAs (miRNAs) are a family of small, non-coding single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. As such, they are believed to play a role in regulating the step-wise changes in gene expression patterns that occur during cell fate specification of multipotent stem cells. Here, we have studied whether terminal differentiation of C2C12 myoblasts is indeed controlled by lineage-specific changes in miRNA expression.
MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells.
Cell line
View SamplesThe circadian clock generates daily rhythms in mammalian liver processes, such as glucose and lipid homeostasis, xenobiotic metabolism, and regeneration. The mechanisms governing these rhythms are not well understood, particularly the distinct contributions of the cell-autonomous clock and central pacemaker to rhythmic liver physiology. Through microarray expression profiling in MMH-D3 hepatocytes, we identified over 1,000 transcripts that exhibit circadian oscillations, demonstrating that many rhythms can be driven by the cell-autonomous clock and that MMH-D3 is a valid circadian model system. The genes represented by these circadian transcripts displayed both co-phasic and anti-phasic organization within a protein-protein interaction network, suggesting the existence of competition for binding sites or partners by genes of disparate transcriptional phases. Multiple pathways displayed enrichment in MMH-D3 circadian transcripts, including the polyamine synthesis module of the glutathione metabolic pathway. The polyamine synthesis module, which is highly associated with cell proliferation and whose products are required for initiation of liver regeneration, includes enzymes whose transcripts exhibit circadian oscillations, such as ornithine decarboxylase (Odc1) and spermidine synthase (Srm). Metabolic profiling revealed that the enzymatic product of SRM, spermidine, cycles as well. Thus, the cell-autonomous hepatocyte clock can drive a significant amount of transcriptional rhythms and orchestrate physiologically relevant modules such as polyamine synthesis.
Cell-autonomous circadian clock of hepatocytes drives rhythms in transcription and polyamine synthesis.
Specimen part, Cell line
View Samples