All highly and poorly permeable metastases from the same mouse brain were collected by laser capture microdissection. Total RNA from both metastatic lesions and immediate microenvironment was isolated from 5 mice bearing 231-BR metastases. As control 4 healthy mouse brains were included.
Reactive astrocytic S1P3 signaling modulates the blood-tumor barrier in brain metastases.
Subject
View SamplesMale C57Bl/6J mice were fed 45%kcal fat diet (HF) or regular rodent chow (NC) from 4 weeks to 16 weeks of age. Gene expression was compared between RNA obtained from pancreatic islets of HF fed mice and NC mice.
Alterations of pancreatic islet structure, metabolism and gene expression in diet-induced obese C57BL/6J mice.
Specimen part
View SamplesTumor growth is associated with a profound alteration of myelopoiesis, leading to recruitment of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). Analyzing the cytokines affecting myelo-monocytic differentiation produced by various experimental tumors, we found that GM-CSF, G-CSF, and IL-6 allowed a rapid generation of MDSCs from precursors present in mouse and human bone marrow (BM). BM-MDSCs induced by GM-CSF+IL-6 possessed the highest tolerogenic activity, as revealed by the ability to impair the priming of IFN- -producing CD8+ T cells upon in vivo adoptive transfer. Moreover, adoptive transfer of syngeneic, GM-CSF+IL-6-conditioned MDSCs to diabetic mice transplanted with allogeneic pancreatic islets resulted in long term acceptance of the allograft and correction of the diabetic status. Cytokines inducing MDSCs acted on a common molecular pathway. Immunoregulatory activity of both tumor-induced and BM-derived MDSCs was entirely dependent on C/EBP transcription factor, a key component of the emergency myelopoiesis triggered by stress and inflammation. Adoptive transfer of tumor antigen-specific CD8+ T lymphocytes resulted in therapy of established tumors only in mice lacking C/EBP in myeloid compartment. These data unveil another link between inflammation and cancer and identify a novel molecular target to control tumor-induced immune suppression.
Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor.
Specimen part
View SamplesAcetaminophen (APAP) is the most widely used analgesic in the United States. Its acute overdose causes liver damage by inducing localized centrilobular cell death. Because of widespread use, APAP toxicity has become the most frequent cause of acute liver failure. Many factors have been associated with the susceptibility of APAP-induced liver injuries, however, few of them have been confirmed and used in the clinical setting.
An integrative genomic analysis identifies Bhmt2 as a diet-dependent genetic factor protecting against acetaminophen-induced liver toxicity.
Specimen part, Time
View Samples