The genetic programs that promote retention of self-renewing leukemia stem cells (LSCs) at the apex of cellular hierarchies in acute myeloid leukemia (AML) are not known. In a mouse model of human AML, LSCs exhibit variable frequencies that correlate with the initiating MLL oncogene and are maintained in a self-renewing state by a transcriptional sub-program more akin to that of embryonic stem cells (ESCs) than adult stem cells. The transcription/chromatin regulatory factors Myb, Hmgb3 and Cbx5 are critical components of the program and suffice for Hoxa/Meis-independent immortalization of myeloid progenitors when co-expressed, establishing the cooperative and essential role of an ESC-like LSC maintenance program ancillary to the leukemia initiating MLL/Hox/Meis program. Enriched expression of LSC maintenance and ESC-like program genes in normal myeloid progenitors and poor prognosis human malignancies links the frequency of aberrantly self-renewing progenitor-like cancer stem cells to prognosis in human cancer.
Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.
No sample metadata fields
View SamplesNormal myeloid lineage cell populations (C57BL/6 mice, aged 4-10 weeks, male or female) with three distinct immunophenotypes were prospectively isolated and characterized. In preparation for FACS sorting, bone marrow cells were separated into c-kit+ and c-kit- fractions using an AutoMACS device. C-kit+ cells were further fractionated based on Gr1 and Mac1 expression, and absence of lineage antigen expression (B220, TER119, CD3, CD4, CD8 and IL7R), by cell sorting. C-kit+ Gr1+ Mac1lo/- and c-kit+ Gr1+ Mac1+ displayed cytologic features of undifferentiated hematopoietic cells or myeloblasts, whereas c-kit- Gr1+ Mac1+ cells were mature neutrophils.
Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.
No sample metadata fields
View SamplesLeukemia cells from mice with MLL-AF10 AML were fractionated into separate sub-populations on the basis of c-kit expression, which correlates with MLL LSC frequency (Somervaille and Cleary, 2006). The sorted AML sub-populations exhibited substantial differences in their frequencies of AML CFCs/LSCs (mean 14-fold) and morphologic features, consistent with a leukemia cell hierarchy with maturation through to terminally differentiated neutrophils.
Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.
No sample metadata fields
View SamplesSMRT (silencing mediator of retinoid and thyroid hormone receptors) is recruited by numerous transcription factors to mediate lineage and signal dependent transcriptional repression. We generated a knock-in mutation in the receptor interaction domain (RID) of SMRT (SMRTmRID) that solely disrupts its interaction with nuclear hormone receptors. SMRTmRID-derived 3T3-MEFs display a dramatically increased adipogenic capacity and accelerated differentiation rate. We measured global gene expression in wild-type versus SMRTmRID-derived 3T3-MEFs in the undifferentiated state to examine which pathways were altered. Our results demonstrate that SMRT-RID dependent repression is a key determinant of the adipogenic set point.
SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis.
No sample metadata fields
View SamplesEye development and photoreceptor maintenance requires the retinal pigment epithelium (RPE), a thin layer of cells that underlies the neural retina. Despite its importance, RPE development has not been studied by a genomic approach. A microarray expression profiling methodology was established in this study for studying RPE development. The intact retina with RPE attached was dissected from developing embryos, and differentially expressed genes in RPE were inferred by comparing the dissected tissues with retinas without RPE using microarray and statistical analyses. We found 8810 probesets to be significantly expressed in RPE at 52 hours post-fertilization (hpf), of which 1443 might have biologically meaningful expression levels. Further, 78 and 988 probesets were found to be significantly over- or under-expressed in RPE respectively compared to retina. Also, 79.2% (38/48) of the known over-expressed probesets have been independently validated as RPE-related transcripts. The results strongly suggest that this methodology can obtain in vivo RPE specific gene expression from the zebrafish embryos and identify novel RPE markers.
Gene expression profiling of zebrafish embryonic retinal pigment epithelium in vivo.
Specimen part
View SamplesRetinal cells are specified in a zebrafish recessive mutant called young (yng) but they fail to terminally differentiate; i.e. extend neurites and make synaptic contacts. A point mutation in a brahma-related gene 1 (brg1) is responsible for this phenotype. In this microarray study, a three-factor factorial design was utilized to investigate the effects of 1) mutation, 2) change in time (36 vs. 52hpf), and 3) change in tissue (retina vs. whole embryos), and their interactions on gene expression. Significant probesets were inferred by using both specific contrasts of the fitted Analysis of Variance (ANOVA) models and a corresponding 2-fold expression cutoff. The probesets were grouped into three broad categories: 1) Brg1-regulated retinal differentiation genes (731 probsets), 2) Retinal specific genes but independent of Brg1 regulation (3038 probesets) and 3) Genes regulated by Brg1 but outside the retina (107 probesets). Four gene groups/pathways including neurite outgrowth regulators, Delta-Notch signalling molecules, Irx family members and specific cell cycle regulators were identified in the first group, and their relevance for retinal differentiation functionally validated. This study demonstrates that an approach such as ours can identify relevant genes and pathways involved in retinal development as well as the development of other tissues at the same time.
Factorial microarray analysis of zebrafish retinal development.
Specimen part
View Samples