Pseudoautosomal regions (PAR1 and PAR2) in eutherians retain homologous regions between the X and Y chromosomes that play a critical role in the obligatory X-Y crossover during male meiosis. Genes that reside in the PAR1 are exceptional in that they are rich in repetitive sequences and undergo a very high rate of recombination. Remarkably, murine PAR1 homologs have translocated to various autosomes, reflecting the complex recombination history during the evolution of the mammalian X chromosome. We now report that the SNF2-type chromatin remodeling protein ATRX controls the expression of eutherians ancestral PAR1 genes that have translocated to autosomes in the mouse. In addition, we have identified two potentially novel mouse PAR1 orthologs. We propose that the ancestral PAR1 genes share a common epigenetic environment that allows ATRX to control their expression.
The SWI/SNF protein ATRX co-regulates pseudoautosomal genes that have translocated to autosomes in the mouse genome.
Sex
View SamplesAim of present study was to describe the changes induced deletion of the Wfs1 gene in the temporal lobe of mice. Mutant mice were backcrossed to two different genomic backgrounds in order to exclude confounding foreign genomic background influence. Samples from temporal lobes were analyzed by using Affymetrix Genechips, expression profiles were functionally annotated by using GSEA and Ingenuity Pathway Analysis. We found that Wfs1 mutant mice are significantly smaller (20.9 1.6 g) than their wild-type counterparts (31.0 0.6g, p < 0.0001). Interestingly, genechip analysis identified growth hormone transcripts up-regulated and functional analysis found appropriate pathways activated. Moreover, we found significant increase in the level of IGF1 in the plasma of wfs1 mutant mice. Taken together, wfs1 mutation induces growth retardation whereas the growth hormone pathway is activated. Further studies are needed to describe biochemical and molecular details of the growth hormone axis in the wfs1 mutant mice.
Wfs1 gene deletion causes growth retardation in mice and interferes with the growth hormone pathway.
Specimen part
View SamplesBeyond demonstrating a critical role for progesterone receptor signaling in normal mammary epithelial proliferation, the progesterone receptor knockout mouse disclosed the progesterone receptor along with its effector pathways as key determinants of mammary neoplastic progression. Despite these advances, however, further progress in our mechanistic understanding of progesterones involvement in mammary morphogenesis and tumorigenesis is contingent upon defining the essential effector pathways responsible for transducing the progesterone signal into a mammary proliferative and/or pro-survival response. Toward this goal, a judiciously chosen acute progesterone treatment regimen together with microarray methods was applied to the mammary gland of the normal mouse to uncover new effectors that operate immediately downstream of the progesterone mammary signal. Examination of the resultant progesterone-responsive transcriptome disclosed inhibitor of differentiation or DNA binding 4 (Id4) as a molecular target acutely induced by progesterone in the murine mammary epithelium.
Transcriptional response of the murine mammary gland to acute progesterone exposure.
No sample metadata fields
View SamplesInhibition of miR-33 results in increased cholesterol efflux and HDL-cholesterol levels in mice. In this study we examined the effect of miR-33 inhibition in a mouse model of atherosclerosis and observed significant reduction in atherosclerotic plaque size. At the end of the study, gene expression in macrophages from the atherosclerotic plaques was assessed.
Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis.
Sex, Specimen part
View SamplesTumor growth is associated with a profound alteration of myelopoiesis, leading to recruitment of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). Analyzing the cytokines affecting myelo-monocytic differentiation produced by various experimental tumors, we found that GM-CSF, G-CSF, and IL-6 allowed a rapid generation of MDSCs from precursors present in mouse and human bone marrow (BM). BM-MDSCs induced by GM-CSF+IL-6 possessed the highest tolerogenic activity, as revealed by the ability to impair the priming of IFN- -producing CD8+ T cells upon in vivo adoptive transfer. Moreover, adoptive transfer of syngeneic, GM-CSF+IL-6-conditioned MDSCs to diabetic mice transplanted with allogeneic pancreatic islets resulted in long term acceptance of the allograft and correction of the diabetic status. Cytokines inducing MDSCs acted on a common molecular pathway. Immunoregulatory activity of both tumor-induced and BM-derived MDSCs was entirely dependent on C/EBP transcription factor, a key component of the emergency myelopoiesis triggered by stress and inflammation. Adoptive transfer of tumor antigen-specific CD8+ T lymphocytes resulted in therapy of established tumors only in mice lacking C/EBP in myeloid compartment. These data unveil another link between inflammation and cancer and identify a novel molecular target to control tumor-induced immune suppression.
Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor.
Specimen part
View SamplesThe mechanisms involved in epithelium-stroma interactions remain poorly understood, despite the importance of the microenvironment during tumorigenesis. Here, we studied the role of Ets2 transcrpiton factor in tumor associated fibroblasts in the MMTV-ErbB2 mammary tumor model. Inactivation of Ets2 specifically in fibroblasts using Fsp-cre significantly reduced tumor growth, in contrast to Ets2 inactivation in epithelium in which no differences in tumor growth were observed.
Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.
Age, Specimen part
View SamplesMouse infection with the tapeworm Hymenolepis diminuta leads to a less severe DNBS-colitis. Increased Th2 and regulatory cytokine production in the spleen is a hallmark of Hymenolepis diminuta infection, therefore we hypothesized that given this microenvironment, splenic adaptive cells acquire an anti-inflammatory phenotype. We tested the ability of putative splenic regulatory B cells generated by Hymenolepis diminuta infection to down-regulate intestinal inflammation. We found that unlike splenic B cells from uninfected mice, splenic B cells from Hymenolepis diminuta -infected animals ameliorated chemically-induced colitis.
Splenic B cells from Hymenolepis diminuta-infected mice ameliorate colitis independent of T cells and via cooperation with macrophages.
Specimen part
View SamplesThe tumor stroma is believed to contribute to some of the most malignant characteristics of epithelial tumors. However, signaling between stromal and tumor cells is complex and remains poorly understood. Here we show that genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumors.
Pten in stromal fibroblasts suppresses mammary epithelial tumours.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Canonical and atypical E2Fs regulate the mammalian endocycle.
Age, Specimen part
View SamplesTo understand the underlying cause and mechanisms of changes in hepatocyte ploidy upon Albumin-Cre mediated deletion of E2f7&8 and Mx1-Cre mediated deletion of E2f1,2&3, we analysed global gene expression of 6 weeks and 2 months liver tissues.
Canonical and atypical E2Fs regulate the mammalian endocycle.
Age, Specimen part
View Samples