Gene expression of Ethanol-treated hepatocytes from WT and transglutaminase 2 knockout mice
Role of transglutaminase 2 in liver injury via cross-linking and silencing of transcription factor Sp1.
No sample metadata fields
View SamplesDuring development a specialised subset of endothelial cells, the haemogenic endothelium, undergo an endothelial-to-haematopoietic transition. This process critically involves the transcription factor Runx1. Here we have isolated a specific subpopulation of endothelial cells using a Runx1 enhancer-reporter transgenic mouse line (23GFP). We have compared the gene expression profile of this population to non-23GFP expressing endothelial cells and CD41 expressing haematopoietic progenitor cells to assess whether 23GFP expression marks a biologically distinct subset of endothelium.
Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level.
Specimen part
View SamplesWe examined the transcriptional function of cyclin D1 in mouse development using two approaches. First, we queried association of cyclin D1 with the genome of E14.5 mouse embryos using ChIP-on-chip approach. We observed binding of cyclin D1 to several promoter regions. Second, we compared gene expression profiles between wild-type and cyclin D1-null retinas. We observed several transcripts with altered levels in cyclin D1-null organs.
Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen.
No sample metadata fields
View SamplesCyclin D1 belongs to the core cell cycle machinery1, and it is frequently overexpressed in human cancers2. The full repertoire of cyclin D1 functions in normal development and in cancer cells is currently unknown. To address this question, here we introduce a novel approach that allows one to determine the set of cyclin D1-interacting proteins (D1 interactome) and cyclin D1-bound genomic fragments (D1 cistrome) in essentially any mouse organ, at any point of development or at any stage of cancer progression. Using this approach, we detected several novel tissue-specific interactors of cyclin D1. A significant number of these partners represent proteins involved in transcription. We show, using genome-wide location analysis3, that cyclin D1 occupies promoters of a very large number of genes in the developing mouse, where it binds in close proximity to transcription start sites. Bioinformatics analyses of cyclin D1-bound genomic segments in the developing embryo revealed DNA recognition sequences for several transcription factors. By querying SAGE libraries4, promoter CpG content5 and gene expression profiles of cyclin D1-null organs, we demonstrate that cyclin D1 binds promoters of highly expressed genes, and that it functions to activate or to repress gene expression in vivo. Analyses of cyclin D1 transcriptional targets reveal that cyclin D1 contributes to cell proliferation by upregulating genes required for S-phase entry and progression. Hence, cyclin D1 plays a broad transcriptional regulatory function in vivo during normal mouse development.
Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen.
No sample metadata fields
View SamplesInfection of RAW264.7 cells with RHku80 parasites or mock-infection for 24 hours
Infection by Toxoplasma gondii specifically induces host c-Myc and the genes this pivotal transcription factor regulates.
Cell line
View SamplesFunctional genomics comparison of EBFko, Pax5ko, and RAG2ko cell lines.
Hoxa9 regulates Flt3 in lymphohematopoietic progenitors.
Cell line
View SamplesInfection of RAW264.7 cells for 24 hours with 32 Toxoplasma Progeny from a Type II x Type III cross
GRA25 is a novel virulence factor of Toxoplasma gondii and influences the host immune response.
No sample metadata fields
View SamplesThis study describes a cDNA microarray analysis that compared developing mouse MyoD-/- limb musculature (MyoD-dependent, innervated by Lateral Motor Column motor neurons) and Myf5-/- back (epaxial) musculature (Myf5-dependent, innervated by Medial Motor Column motor neurons) to the control and to each other, at embryonic day 13.5 which coincides with the robust programmed cell death of motor neurons and the inability of myogenesis to undergo its normal progression in the absence of Myf5 and MyoD that at this embryonic day cannot substitute for each other.
Role of skeletal muscle in motor neuron development.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomic signatures of hepatocellular carcinoma derived from nonalcoholic Fatty liver disease.
Age, Specimen part, Disease
View SamplesLiver global gene expression patterns of 9 GNMT-knockout mice histopathologically determined to have non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) together with 10 MAT1A-knockout mice histopathologically determined to have steatosis and NASH. All these have their respective wild type patterns. These were analyzed to define signatures to study the pathogenesis of NAFLD-derived HCC, explore which subtypes of cancers can be investigated using mouse models and define a signature of HCC differential survival that can be used to characterize HCC subtypes of different survival derived from mixed etiologies.
Integrative genomic signatures of hepatocellular carcinoma derived from nonalcoholic Fatty liver disease.
Age, Specimen part, Disease
View Samples