Increasing the understanding of the impact of changes in oncogenes and tumor suppressor genes is essential for improving the management of lung cancer. Recently, we identified a new mouse lung-specific tumor suppressor - the G-protein coupled receptor 5A (Gprc5a). We sought to understand the molecular consequences of Gprc5a loss and towards this we performed microarray analysis of the transcriptomes of lung epithelial cells cultured from normal tracheas of Gprc5a knockout and wild-type mice to define a loss-of-Gprc5a gene signature. Moreover, we analyzed differential gene expression patterns between Gprc5a knockout normal lung epithelial cells as well as lung adenocarcinoma cells isolated and cultured from tumors of NNK-exposed Gprc5a knockout mice.
A Gprc5a tumor suppressor loss of expression signature is conserved, prevalent, and associated with survival in human lung adenocarcinomas.
Specimen part
View SamplesKRAP (Ki-ras-induced actin-interacting protein) is a cytoskeleton-associated protein and a ubiquitous protein among tissues, originally identified as a cancer-related molecule. KRAP-deficient (KRAP-/-) mice show enhanced metabolic rate, decreased adiposity, improved glucose tolerance, hypoinsulinemia and hypoleptinemia. KRAP-/- mice are also protected against high-fat diet-induced obesity and insulin resistance despite of hyperphagia.
Altered energy homeostasis and resistance to diet-induced obesity in KRAP-deficient mice.
No sample metadata fields
View SamplesKRAP (Ki-ras-induced actin-interacting protein) is a cytoskeleton-associated protein and a ubiquitous protein among tissues, originally identified as a cancer-related molecule. KRAP-deficient (KRAP-/-) mice show enhanced metabolic rate, decreased adiposity, improved glucose tolerance, hypoinsulinemia and hypoleptinemia. KRAP-/- mice are also protected against high-fat diet-induced obesity and insulin resistance despite of hyperphagia.
Altered energy homeostasis and resistance to diet-induced obesity in KRAP-deficient mice.
No sample metadata fields
View SamplesTo clarify inflammatory genes whose expression is suppressed at high temperatures, we performed comprehensive analysis of gene expression by using a DNA microarray. Two independent primary cultures of mouse embryo fibroblasts (MEF1 and MEF2) were treated with LPS for 4 hours, or treated with LPS for 4 hours after the pretreatment with heat shock at 42C for 1 hour, and we identified 100 genes that undergo more than a 3-fold increase with LPS treatment. Remarkably, 86 genes (86%) underwent less than a 2-fold increase after combined treatments with heat shock and LPS in MEF1 and MEF2 cells.
Heat shock transcription factor 1 inhibits expression of IL-6 through activating transcription factor 3.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 on mice.
Sex, Age, Specimen part
View SamplesWe compared the gene expressions of the intestine, liver and spleen tissues between mice at 4 months of age and mice at 28 months of age. We used microarrays to examine the age-related changes of gene expressions of the jejunum, ileum, distal colon, liver and spleen in mice. Abbreviations used: C, 28-month-old mice; Y, 4-month-old mice.
Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 on mice.
Sex, Age, Specimen part
View SamplesWe performed the long-term administration experiment using a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 (LB81 yogurt) for 20 months in order to understand the effects of the long-term intake of probiotics on mice. Microarrays were used to compare the gene expressions of the intestine, liver and spleen tissues between control mice and LB81 yogurt-intake mice at 28 months of age.
Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 on mice.
Sex, Age, Specimen part
View SamplesRecent clinical data suggest that the efficacy of statin treatment in patients with heart failure varies depending on the drugs administered. Therefore, the present study was undertaken to compare murine cardiac gene expression following treatment with four different statins.
Comparative effects of statins on murine cardiac gene expression profiles in normal mice.
Sex, Specimen part
View SamplesThe Polycomb group (PcG) gene products mediate heritable silencing of developmental regulators in metazoans, participating in one of two distinct multimeric protein complexes, the Polycomb repressive complexes-1 (PRC1) and -2 (PRC2)1-5. PRC2 catalyses trimethylation of histone H3 at lysine 27 (H3K27) which in turn is thought to provide a recruitment site for PRC13-7. Recent studies demonstrate that mono-ubiquitylation of histone H2A at lysine 119 is important in PcG mediated silencing with the core PRC1 component Ring1A/B functioning as the E3 ligase8. PRC2 has been shown to share target genes with the core transcription network to maintain embryonic stem (ES) cells including Oct4 and Nanog9. Here we identify an essential role for PRC1 in repressing developmental regulators in ES cells, and thereby in maintaining ES cell pluripotency. A significant proportion of the PRC1 target genes are also repressed by Oct4. We demonstrate that engagement of PRC1 and PRC2 at target genes is Oct4-dependent and moreover that Ring1B interacts with Oct4. Collectively these results show that PcG complexes are instrumental in Oct4-dependent repression required to maintain pluripotency of ES cells. This study provides a first functional link between a core ES cell regulator and global epigenetic regulation of the genome.
Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity.
No sample metadata fields
View SamplesTo investigate the role of YAP/TAZ as factors able to convert differentiated cells into stem cells of the same tissue, we compared the expression profiles of mammary organoids (yOrg) obtained by doxycycline-inducible expression of YAP in luminal differentiated mammary cells with original luminal differentiated mammary cells (Lum) and organoids from native mammary stem cells (Org).
Induction of Expandable Tissue-Specific Stem/Progenitor Cells through Transient Expression of YAP/TAZ.
Specimen part
View Samples