BBF2H7 (BBF2 human homolog on chromosome 7), an ER-resident basic leucine zipper transcription factor, is activated in response to ER stress and abundantly expresses in chondrocytes. While BBF2H7 is widely expressed in many tissues and organs, the most intense signals were detected in the proliferating zone of the cartilage. We compared gene expressions in primary cultured chondrocytes prepared from rib cartilage between WT and BBF2H7-/- mice at E18.5. Primary cultured chondrocytes were prepared from E18.5 rib cartilage of WT and BBF2H7-/- mice. Chondrocytes were isolated using 0.2% collagenase D (Roche) after adherent connective tissue was removed by 0.2% trypsin (Sigma) and collagenase pretreatment. Isolated chondrocytes were maintained in -MEM (Gibco) supplemented with 10% FCS and 50 g/mL ascorbic acid. Adenovirus vectors expressing the mouse p60 BBF2H7 (1-377 aa, BBF-N) were constructed with the AdenoX Expression system (Clontech), according to the manufacturers protocol. The cells were infected with adenoviruses 30 h before analysis.
Regulation of endoplasmic reticulum stress response by a BBF2H7-mediated Sec23a pathway is essential for chondrogenesis.
Specimen part
View SamplesInvestigation of whole genome gene expression level changes in OASIS KO calvaria compared to wild-type calvaria.
Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation.
Specimen part
View SamplesIn order to explore molecules whose expression is controlled by Slc39a13, we investigated gene expression profiling of primary osteoblast isolated from wild-type and Slc39a13 knockout mice.
The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways.
No sample metadata fields
View SamplesD-3-Phosphoglycerate dehydrogenase (Phgdh; EC 1.1.1.95) is a necessary enzyme for de novo L-serine biosynthesis via the phosphorylated pathway. We demonstrated previously that Phgdh is expressed exclusively by neuroepithelium and radial glia in developing mouse brain and later mainly by astrocytes. Mutations in the human PHGDH gene cause serine deficiency disorders (SDD) associated with severe neurological symptoms such as congenital microcephaly, psychomotor retardation, and intractable seizures. We recently demonstrated that genetically engineered mice, in which the gene for Phgdh has been disrupted, have significantly decreased levels of serine and glycine, and exhibit malformation of brain such as microcephaly. The Phgdh null (KO) embryos exhibit lethal phenotype after gestational day 14, indicating that the phosphorylated pathway is essential for embryogenesis, especially for brain development. It is worth noting that the Phgdh knockout (KO) embryos primarily displayed microcephaly, which is the most conspicuous phenotype of patients with SDD. Thus, Phgdh KO mice are a useful animal model for studying the effect of diminished L-serine levels on development of the central nervous system and other organs. To better understand the mechanism underlying the molecular pathogenesis of SDD, we sought to examine whether gene expression is altered in the Phgdh KO mouse model. We identify genes that have altered expression in the head of the Phgdh KO embryos using the GeneChip array. Some of the genes identified by this method belong in functional categories that are relevant to the biochemical and morphological aberrations of the Phgdh deletion.
Inactivation of the 3-phosphoglycerate dehydrogenase gene in mice: changes in gene expression and associated regulatory networks resulting from serine deficiency.
Specimen part
View SamplesQuetiapine is an atypical neuroleptic with a pharmacological profile distinct from classic neuroleptics. It is currently approved for treating patients with schizophrenia, major depression and bipolar I disorder. However, its cellular effects remain elusive.
Unique pharmacological actions of atypical neuroleptic quetiapine: possible role in cell cycle/fate control.
Sex, Treatment
View SamplesThe perinatal period and early infancy are considered critical periods for lung development, and adversities during this period are believed to impact lung health in adulthood.The main factors affecting postnatal lung development and growth include environmental exposures, cigarette smoking, (viral) infections, allergic sensitization, and asthma.Therefore, we hypothesized that concomitant exposure in the early postnatal period in mice would cause more profound alterations in lung alveolarization and growth in adult life, quantified by stereology, and differently modulate lung inflammation and gene expression than either insult alone.Five-day-old male mice were immunized intraperitoneally (i.p.) with 10 µg of ovalbumin (OVA). This procedure was repeated at the 7th day of life, animals from the control group received i.p. injection of PBS only. Mice were exposed to either ambient PM2.5 or filtered air from the 5th to the 39th day of life, using an ambient particle concentrator developed at the Harvard School of Public Health (HAPC).Total RNA of lung samples (n=3 animals per group) was extracted using RNeasy Mini Kit (Qiagen, Hilden, Germany), according to manufacturer's instructions. The microarray analysis was performed using three RNA samples for each studied group (Control, OVA, PM2.5, OVA+PM2.5), totalizing 12 samples. One hundred nanograms of total RNA was amplified with the Ambion WT Expression Kit and hybridized onto the GeneChip Mouse Gene 2.0 ST Array (Thermo Scientific, Massachusetts, USA), following manufacturer’s protocol. The comparison between the control and OVA group exhibit 32 DEGs (28 up-regulated and 4 down-regulated), between the control and PM2.5 group had 6 DEGs (4 up and 2 down) and between the control and OVA+PM2.5 group had 5 DEGs (4 up and 1 down). The comparison between OVA and PM2.5 group showed 97 DEGS (22 up and 75 down) and between OVA and OVA+PM2.5 group had 7 DEGs (4 up and 3 down). Finally, the comparison between the PM2.5 and OVA+PM2.5 group exhibit 34 DEGs (2 up and 32 down).Our experimental data provide pathological support for the hypothesis that either allergic or environmental insults in early life have permanent adverse consequences to lung growth. In addition, combined insults were associated with the development of a COPD-like phenotype in young adult mice.
Allergic sensitization and exposure to ambient air pollution beginning early in life lead to a COPD-like phenotype in young adult mice.
Treatment
View SamplesBackground & Aims: HNF4 is an important transcriptional regulator of hepatocyte and pancreatic function. Hnf4 deletion is embryonically lethal with severe defects in visceral endoderm formation, liver maturation and colon development. However, the precise role of this transcription factor in maintaining homeostasis of the adult intestine remains unclear. Herein, we aimed to elucidate the adult intestinal functions of Hnf4. Methods: A conditional intestinal epithelial Hnf4 knockout mouse was generated. Histological abnormality of the colonic mucosa was assessed by immunodetection and Western. Changes in global gene expression and biological network were analyzed. Results: Hnf4 intestine null mice developed normally until reaching young adulthood. Crypt distortion became apparent in the Hnf4 null colon at 3 months of age followed by focal areas of crypt dropout, increased immune cell infiltrates, crypt hyperplasia and early signs of polyposis later in life. A gene profiling analysis identified cell death and cell cycle related to cancer as the most significant sets of genes altered in the Hnf4 colon null mice. Expression levels of the tight junction proteins claudin 4, 8 and 15 were altered early in the colon epithelium of Hnf4 mutants and correlated with increased barrier permeability to a molecular tracer that does not normally penetrate normal mucosa. Conclusion: These observations support a functional role for Hnf4 in protecting the colonic mucosa against the initiation of the changes resembling inflammatory bowel diseases and polyp formation.
Loss of hepatocyte-nuclear-factor-4alpha affects colonic ion transport and causes chronic inflammation resembling inflammatory bowel disease in mice.
No sample metadata fields
View SamplesObjective Previous studies showed that genetic deletion or pharmacological blockade of the Receptor for Advanced Glycation Endproducts (RAGE) prevents the early structural changes in the glomerulus associated with diabetic nephropathy (DN). To overcome limitations of mouse models that lack the progressive glomerulosclerosis observed in humans, we studied the contribution of RAGE to DN in the OVE26 type 1 mouse, a model of progressive glomerulosclerosis and decline of renal function.
Deletion of the receptor for advanced glycation end products reduces glomerulosclerosis and preserves renal function in the diabetic OVE26 mouse.
Sex, Age, Specimen part, Disease, Disease stage
View Samples