Genomic profiling of bleomycin- and saline-treated mice across 7 timepoints (1, 2, 7, 14, 21, 28, 35 days post treatment) was carried out in C57BL6/J mice to determine the phases of response to bleomycin treatment which correspond to onset of active pulmonary fibrosis.
Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease.
Sex, Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC).
Specimen part, Cell line, Treatment
View SamplesMurine ES cell gene expression before RA induction are used to compare gene expression for time-points of 2, 4, 6hrs post-induction.
Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC).
No sample metadata fields
View SamplesDuring embryogenesis, the endothelial and the hematopoietic lineages first appear during gastrulation in the blood island of the yolk sac. We have previously reported that an Ets variant gene 2 (Etv2/ER71) mutant embryo lacks hematopoietic and endothelial lineages, however, the precise roles of Etv2 in yolk sac development remains unclear.
Etv2 is expressed in the yolk sac hematopoietic and endothelial progenitors and regulates Lmo2 gene expression.
Cell line
View SamplesBackground: Gq-coupled G protein-coupled receptors (GPCR) mediate the actions of a variety of messengers that are key regulators of cardiovascular function. Enhanced Gaq-mediated signaling plays an important role in cardiac hypertrophy and in the transition to heart failure. We have recently described that Gaq acts as an adaptor protein that facilitates PKCz-mediated activation of ERK5 in epithelial cells. Since the ERK5 cascade is known to be involved in cardiac hypertrophy, we have investigated the potential relevance of this pathway in Gq-dependent signaling in cardiac cells.
Protein kinase C (PKC)ζ-mediated Gαq stimulation of ERK5 protein pathway in cardiomyocytes and cardiac fibroblasts.
Sex, Age, Specimen part
View SamplesDominant RUNX1 inhibition has been proposed as a common pathway for CBF-leukemia. CBFb-SMMHC, a fusion protein in human acute myeloid leukemia (AML), dominantly inhibits RUNX1 largely through its RUNX1 high-affinity binding domain (HABD). We generated knock-in mice expressing CBFb-SMMHC with a HABD deletion, CBFb-SMMHCd179-221. These mice developed leukemia highly efficiently, even though hematopoietic defects associated with Runx1-inhibition were partially rescued.
Accelerated leukemogenesis by truncated CBF beta-SMMHC defective in high-affinity binding with RUNX1.
Specimen part
View SamplesThe role of the renin-angiotensin system in chronic kidney disease involves multiple peptides and receptors. Exerting antipodal pathophysiological mechanisms, renin inhibition and AT1 antagonism ameliorate renal damage.
AT1 antagonism and renin inhibition in mice: pivotal role of targeting angiotensin II in chronic kidney disease.
Age, Specimen part, Treatment
View SamplesA permantly active form of the oncogene Akt was expressed in the keratinocytes of the basal proliferative layer of the epidermis. Stem cells of the hair follicle expressing the cell surface marker CD34 were isolated. RNA form the CD34(+) and CD34(-) keratinocytes was extracted and and hybridized to Mouse Genome 430 2.0 Affymetrix arrays.
Akt signaling leads to stem cell activation and promotes tumor development in epidermis.
Specimen part
View SamplesThe epidermal specific ablation of Trp53 gene leads to the spontaneous development of aggressive tumors in mice through a process that is accelerated by the simultaneous ablation of Rb gene. Since alterations of p53-dependent pathway are common hallmarks of aggressive, poor prognostic human cancers, these mouse models can recapitulate the molecular features of some of these human malignancies. To evaluate this possibility, gene expression microarray analysis was performed in mouse samples. The mouse tumors display increased expression of cell cycle and chromosomal instability associated genes. Remarkably, they are also enriched in human embryonic stem cell gene signatures, a characteristic feature of human aggressive tumors. Using cross-species comparison and meta-analytical approaches, we also observed that spontaneous mouse tumors display robust similarities with gene expression profiles of human tumors bearing mutated TP53, or displaying poor prognostic outcome, from multiple body tissues. We have obtained a 20-gene signature whose genes are overexpressed in mouse tumors and can identify human tumors with poor outcome from breast cancer, astrocytoma and multiple myeloma. This signature was consistently overexpressed in additional mouse tumors using microarray analysis. Two of the genes of this signature, AURKA and UBE2C, were validated in human breast and cervical cancer as potential biomarkers of malignancy. Our analyses demonstrate that these mouse models are promising preclinical tools aimed to search for malignancy biomarkers and to test targeted therapies of prospective use in human aggressive tumors and/or with p53 mutation or inactivation.
Gene expression profiling of mouse p53-deficient epidermal carcinoma defines molecular determinants of human cancer malignancy.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.
Specimen part, Disease
View Samples