Proper functioning of tissues requires cells to behave in uniform, well-organized ways. Conversely, many diseases involve increased cellular heterogeneity due to genetic and epigenetic alterations. Defining the mechanisms that counteract phenotypic variability is therefore critical to understand how tissues sustain homeostasis. Here, we carried out a single-cell resolution screen of zebrafish embryonic blood vessels upon mutagenesis of single microRNA (miRNA) genes and multi-gene miRNA families. We found that miRNA mutants exhibit a profound increase in cellular phenotypic variability of specific vascular traits. Genome-wide analysis of endothelial miRNA target genes identified antagonistic regulatory nodes of vascular growth and morphogenesis signaling that allow variable cell behaviors when derepressed. Remarkably, lack of such miRNA activity greatly sensitized the vascular system to microenvironmental changes induced by pharmacological stress. We uncover a previously unrecognized role of miRNAs as a widespread protective mechanism that limits variability in cellular phenotypes. This discovery marks an important advance in our comprehension of how miRNAs function in the physiology of higher organisms. Overall design: Analysis of differential genes expression in Zebrafish endothelial cells for 4 different developmental stages
MicroRNAs Establish Uniform Traits during the Architecture of Vertebrate Embryos.
No sample metadata fields
View SamplesWe have determined the whole genome sequence of an individual at high accuracy and performed an integrated analysis of omics profiles over a 1.5 year period that included healthy and two virally infected states. Omics profiling of transcriptomes, proteomes, cytokines, metabolomes and autoantibodyomes from blood components have revealed extensive, dynamic and broad changes in diverse molecular components and biological pathways that occurred during healthy and disease states. Many changes were associated with allele- and edit-specific expression at the RNA and protein levels, which may contribute to personalized responses. Importantly, genomic information was also used to predict medical risks, including Type II Diabetes (T2D), whose onset was observed during the course of our study using standard clinical tests and molecular profiles, and whose disease progression was monitored and subsequently partially managed. Our study demonstrates that longitudinal personal omics profiling can relate genomic information to global functional omics activity for physiological and medical interpretation of healthy and disease states. Overall design: Examination of blood component in 20 different time points over 1.5 years which includes 2 disease state and 18 healty state Related exome studies at: SRX083314 SRX083313 SRX083312 SRX083311
Personal omics profiling reveals dynamic molecular and medical phenotypes.
Specimen part, Disease, Subject
View SamplesSTEP (striatal-enriched tyrosine phosphatase) is a brain-specific phosphatase named for its robust expression in striatum. Brains from homozygous and heterozygous STEP knockout mice and wild-type littermates were harvested, and striatum microdissected. RNA was extracted and hybridized to Affymetrix 230_2 microarray chips.
Downstream effects of striatal-enriched protein tyrosine phosphatase reduction on RNA expression in vivo and in vitro.
Sex, Specimen part, Treatment
View SamplesPulmonary dendritic cells are heterogenous cells comprise four distinct subsets including two conventional dendritic cell subsets, CD103+ and CD11bhiCD14lo cells, and two monocyte-derived dendritic cell subsets. Their functions in terms of migration and T cell activation are distinct, but genes regulating their features are to be determined.
Complement receptor C5aR1/CD88 and dipeptidyl peptidase-4/CD26 define distinct hematopoietic lineages of dendritic cells.
Sex, Specimen part
View SamplesGoal of the experiment: Analysis of gene expression changes in the cortex, striatum, hippocampus, hypothalamus, Drd2-MSNs and Drd1-MSNs of mice with a postnatal, neuron-specific ablation of GLP or G9a as compared to control mice.
Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex.
Specimen part
View SamplesIn euakryotes, mRNAs must be exported from the nucleus to the cytsoplasm. NXF2 is highly expressed in the mouse male germ cells. We are interested in its function in spermatogenesis, espically in the nuclear RNA export in the testis. To this end, we made Nxf2 mutant mice by gene targeting. In an attempt to identify the mRNA substrates of NXF2, we perform the microarray experiments on testes.
Inactivation of Nxf2 causes defects in male meiosis and age-dependent depletion of spermatogonia.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.
Specimen part
View SamplesWe compared gene expression differences in Lyl-1 knockout vs wildtype LMPPs
The transcription factor Lyl-1 regulates lymphoid specification and the maintenance of early T lineage progenitors.
Specimen part
View SamplesWe compare the transcriptome of embryonic stem cells (ESCs), adult stem cells with apparent greater differentiation potential such as multipotent adult progenitor cells (MAPCs), mesenchymal stem cells (MSCs) and neurospheres (NS). Mouse and rat MAPCs were used in this study and two different array platforms (Affymetrix and NIA) were used for mouse samples.
Comparative transcriptome analysis of embryonic and adult stem cells with extended and limited differentiation capacity.
No sample metadata fields
View SamplesTo examine the role of CREB overexpression in hematopoiesis, we created a model of leukemia in zebrafish by overexpressing the human CREB in the myeloid hematopoietic lineage. Whole transcriptome analysis of kidney-marrow revealed 171 genes differently expressed between CREB- and control-zebrafish (five per group). Interestingly, the integration of this signature with human deposited data revealed that this tumor resembled a human AML at transcriptome level.
CREB engages C/EBPδ to initiate leukemogenesis.
Specimen part
View Samples