Abstract
Gene expression profiles in skeletal muscle after gene electrotransfer.
No sample metadata fields
View SamplesAlpha-synuclein is an abundant protein implicated in synaptic function and plasticity, but the molecular mechanism of its action is not understood. Missense mutations and gene duplication/triplication events result in Parkinson's disease, a neurodegenerative disorder of old age with impaired movement and emotion control. Here, we systematically investigated the striatal as well as the cerebellar transcriptome profile of alpha-synuclein-deficient mice via a genome-wide microarray survey in order to gain hypothesis-free molecular insights into the physiological function of alpha-synuclein. A genotype-dependent, specific and strong downregulation of forkhead box P1 (Foxp1) transcript levels was observed in all brain regions from postnatal age until old age and could be validated by qPCR. In view of the co-localization and heterodimer formation of FOXP1 with FOXP2, a transcription factor with a well established role for vocalization, and the reported regulation of both alpha-synuclein and FOXP2 expression during avian song learning, we performed a detailed assessment of mouse movements and vocalizations in the postnatal period. While there was no difference in isolation-induced behavioral activity in these animals, the alpha-synuclein-deficient mice exhibited an increased production of isolation-induced ultrasonic vocalizations (USVs). This phenotype might also reflect the reduced expression of the anxiety-related GABA-A receptor subunit gamma 2 (Gabrg2) we observed. Taken together, we identified an early behavioral consequence of alpha-synuclein deficiency and accompanying molecular changes, which supports the notion that the neural connectivity of sound or emotion control systems is affected.
Alpha-synuclein deficiency affects brain Foxp1 expression and ultrasonic vocalization.
Age, Specimen part
View SamplesParkinson's disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD. Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of -synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. Thus, aging Pink1/ mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death. Transcriptome microarray data of Pink1-/- mouse brains in absence of a stressor, even at old age, show remarkably sparse dysregulations. See Gispert-S et al 2009 PLOS ONE.
Potentiation of neurotoxicity in double-mutant mice with Pink1 ablation and A53T-SNCA overexpression.
Age, Specimen part
View SamplesSpinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder, which is caused by an unstable CAG-repeat expansion in the SCA2 gene, that encodes a polyglutamine tract (polyQ-tract) expansion in ataxin-2 protein (ATXN2). The RNA-binding protein ATXN2 interacts with the poly(A)-binding protein PABPC1, localizing to ribosomes at the rough endoplasmic reticulum or to polysomes. Under cell stress ATXN2 and PABPC1 show redistribution to stress granules where mRNAs are kept away from translation and from degradation. It is unknown whether ATXN2 associates preferentially with specific mRNAs or how it modulates their processing. Here, we investigated Atxn2 knock-out (Atxn2-/-) mouse liver, cerebellum and midbrain regarding their RNA profile, employing oligonucleotide microarrays for screening and RNA deep sequencing for validation. Modest ~1.4-fold upregulations were observed for the level of many mRNAs encoding ribosomal proteins and other translation pathway factors. Quantitative reverse transcriptase PCR and immunoblots in liver tissue confirmed these effects and demonstrated an inverse correlation also with PABPC1 mRNA and protein. ATXN2 deficiency also enhanced phosphorylation of the ribosomal protein S6, while impairing the global protein synthesis rate, suggesting a block between the enhanced translation drive and the impaired execution. Furthermore, ATXN2 overexpression and deficiency retarded cell cycle progression. ATXN2 mRNA levels showed a delayed phasic twofold increase under amino acid and serum starvation, similar to ATXN3, but different from motor neuron disease genes MAPT and SQSTM1. ATXN2 mRNA levels depended particularly on mTOR signalling. Altogether the data implicate ATXN2 in the adaptation of mRNA translation and cell growth to nutrient availability and stress.
Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate.
Age, Specimen part
View Samples