Toxin A (TcdA) and Toxin B (TcdB), of the pathogen Clostridium difficile, are virulence factors that cause gross pathologic changes (e.g. inflammation, secretion, and diarrhea) in the infected host, yet the molecular and cellular pathways leading to observed host responses are poorly understood. To address this gap, TcdA and/or TcdB were injected into the ceca of mice and the genome-wide transcriptional response of epithelial layer cells was examined. Bioinformatic analysis of gene expression identified sets of cooperatively expressed genes. Further analysis of inflammation associated genes revealed dynamic chemokine responses.
In vivo physiological and transcriptional profiling reveals host responses to Clostridium difficile toxin A and toxin B.
No sample metadata fields
View SamplesAnalysis of gene expression in lungs of C57BL/6J mice that develop chronic airway disease phenotypes after a single Sendai virus infection, compared with mice treated with UV-inactivated virus.
Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease.
Sex, Time
View SamplesInterleukin 2 (IL-2), a cytokine linked to human autoimmune diseases, limits IL-17 production. We show that deletion of Stat3 in T cells abrogates IL-17 production and attenuates autoimmunity associated with IL-2 deficiency. While STAT3 induces IL-17 and RORt and inhibits Foxp3, IL-2 inhibited IL-17 independently of Foxp3 and RORt. We found that STAT3 and STAT5 bound to multiple common sites across the Il17 genetic locus. The induction of STAT5 binding by IL-2 was associated with a reduction in STAT3 binding at these sites and the inhibition of associated active epigenetic marks. Titrating the relative activation of STAT3 and STAT5 modulated TH17 cell specification. Thus, the balance rather than the absolute magnitude of these signals determines the propensity of cells to make a key inflammatory cytokine.
Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5.
Specimen part
View SamplesThe immense molecular diversity of neurons challenges our ability to deconvolve the relationship between the genetic and the cellular underpinnings of neuropsychiatric disorders. Hypocretin (orexin) containing neurons of the lateral hypothalamus are clearly essential for the normal regulation of sleep and wake behaviors, and have been implicated in feeding, anxiety, depression and reward. However, little is known about the molecular phenotypes of these cells, or the mechanism of their specification. We have generated a Hcrt bacTRAP line for comprehensive translational profiling of these neuronsin vivo. From this profile, we have identified 188 transcripts, as enriched in these neurons, in additions to thousands more moderately enriched or nominally expressed. We validated many of these at the RNA and protein level, including the transcription factor Lhx9. Lhx9 protein is found in a subset of these neurons, and ablation of these gene results in a 30% loss of Hcrt neuron number, and a profound hypersomnolence in mice.This data suggests that Lhx9 may be important for specification of some Hcrt neurons, and the subsets of these neurons may contribute to discrete sleep phenotypes.
Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation.
Sex, Specimen part
View SamplesStudies investigating the causes of autism spectrum disorder (ASD) point to genetic as well as epigenetic mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here we identify the bromodomain and extra-terminal domain containing transcriptional regulators (BETs) as epigenetic drivers of an ASD-like disorder in mice. We found that the pharmacological suppression of the BET proteins by a novel, highly selective and brain-permeable inhibitor, I-BET858, leads to selective suppression of neuronal gene expression followed by the development of an autism-like syndrome in mice. Many of the I-BET858 affected genes have been linked to ASD in humans thus suggesting the key role of the BET-controlled gene network in ASD. Our studies also suggest that environmental factors controlling BET proteins or their target genes may contribute to the epigenetic mechanism of ASD.
Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice.
Specimen part
View SamplesCD4+ T cells that selectively produce interleukin (IL)-17, are critical for host defense and autoimmunity1-4. Crucial for T helper17 (Th17) cells in vivo5,6, IL-23 has been thought to be incapable of driving initial differentiation. Rather, IL-6 and transforming growth factor (TGF)-1 have been argued to be the factors responsible for initiating specification7-10. Herein, we show that Th17 differentiation occurs in the absence of TGF- signaling. Neither IL-6 nor IL-23 alone efficiently generated Th17 cells; however, these cytokines in combination with IL-1 effectively induced IL-17 production in nave precursors, independently of TGF-. Epigenetic modification of the Il17a/Il17f and Rorc promoters proceeded without TGF-1, allowing the generation of cells that co-expressed Rort and T-bet. T-bet+Rort+ Th17 cells are generated in vivo during experimental allergic encephalomyelitis (EAE), and adoptively transferred Th17 cells generated with IL-23 in the absence of TGF-1 were more pathogenic in this experimental disease. These data suggest a new model for Th17 differentiation. Consistent with genetic data linking the IL23R with autoimmunity, our findings re-emphasize the role of IL-23 and therefore have important implications for the development of new therapies.
Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling.
Treatment
View SamplesThe anti-diabetic drug and agonist of the peroxisome proliferator-activated receptor gamma (Pparg), rosiglitazone, was recently withdrawn in many countries because the drug use was associated with an increased risk of heart failure. To investigate underlying pathomechanisms, we chose 6-month-old apolipoprotein E (apoE)-deficient mice, which are prone to atherosclerosis and insulin resistance, and thereby mimic the risk profile of patients with cardiovascular disease. After 8 weeks of rosiglitazone treatment (30 mg/kg/day), echocardiography and histology analyses demonstrated that rosiglitazone had induced heart failure with cardiac dilation. Concomitantly, cardiac lipid overload and lipid-induced cardiomyocyte death developed. The microarray gene expression study of heart tissue from rosiglitazone-treated apoE-deficient mice relative to untreated apoE-deficient mice and non-transgenic B6 mice identified cardiac Pparg-dependent lipid metabolism genes in rosiglitazone-treated mice, which seem to trigger a major heart failure promoting pathway.
Inhibition of G-protein-coupled Receptor Kinase 2 Prevents the Dysfunctional Cardiac Substrate Metabolism in Fatty Acid Synthase Transgenic Mice.
Age, Specimen part, Treatment
View SamplesPtf1a was identified as the essential transcription factor which controls pancreatic exocrine enzyme expression. With lineage tracing eperiments Ptf1a was recognized as an important pancreatic progenitor transcription factor and Ptf1a null mice do not develop a pancreas.
RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer.
Specimen part, Treatment
View SamplesPAX8-PPARG fusion protein (PPFP) results from a t(2;3)(q13;p25) chromosomal translocation, is found in 30% of follicular thyroid carcinomas, and demonstrates oncogenic capacity in transgenic mice. A PPARG ligand, pioglitazone, is highly therapeutic in mice with PPFP thyroid carcinoma. We used our previously characterized transgenic mouse model of PPFP thyroid carcinoma to identify PPFP binding sites in vivo using ChIP-seq, and to identify genes and pathways regulated by PPFP with and without pioglitazone treatment via integration with RNA-seq and Affymetrix microarray data. This submission contains the Affymetrix microarray data. PPFP and pioglitazone regulated genes involved in lipid and fatty acid metabolism, ribosome function, immune processes, cell death and other cancer-related processes. The RNA-seq data yielded similar findings.
Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer.
Specimen part, Treatment
View Samples