The role of estrogen and testosterone in the regulation of gene expression in the proximal reproductive tract is not completely understood. To address this question, mice were treated with testosterone or estradiol and RNA from the efferent ducts and caput epididymis was processed and hybridized to Affymetrix MOE 430 2.0 microarrays. Analysis of array output identified probe sets in each tissue with altered levels in hormone treated versus control animals. Hormone treatment efficacy was confirmed by determination of serum hormone levels pre- and post-treatment and observed changes in transcript levels of previously reported hormone-responsive genes. Tissue-specific hormone sensitivity was observed with 2867 and 3197 probe sets changing significantly in the efferent ducts after estrogen and testosterone treatment, respectively. In the caput epididymis, 117 and 268 probe sets changed after estrogen and testosterone treatment, respectively, demonstrating a greater response to hormone in the efferent ducts than the caput epididymis. Transcripts sharing similar profiles in the intact and hormone-treated animals compared with castrated controls were also identified. Ontological analysis of probe sets revealed a significant number of hormone-regulated transcripts encode proteins associated with lipid metabolism, transcription and steroid metabolism in both tissues. Real-time RT-PCR was employed to confirm array data and investigate other potential hormone-responsive regulators of proximal reproductive tract function. The results of this work reveal previously unknown responses to estrogen in the caput epididymis and to testosterone in the efferent ducts as well as tissue specific hormone sensitivity in the proximal reproductive tract.
Regulation of gene expression by estrogen and testosterone in the proximal mouse reproductive tract.
Sex, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Profiling gene expression during the differentiation and development of the murine embryonic gonad.
No sample metadata fields
View SamplesTime course of gene expression in the murine embryonic ovary from the time of the indifferent gonad (11.5dpc) to birth (18.5dpc)
Profiling gene expression during the differentiation and development of the murine embryonic gonad.
No sample metadata fields
View SamplesTime course of gene expression in the murine embryonic testis from the time of the indifferent gonad (11.5dpc) to birth (18.5dpc)
Profiling gene expression during the differentiation and development of the murine embryonic gonad.
No sample metadata fields
View SamplesDmrt1 (doublesex and mab-3 related transcription factor 1) is a conserved transcriptional regulator of male differentiation required for testicular development in vertebrates. This study examines the result of conditional removal of Dmrt1 from Sertoli cells in P28 testis tissue.
DMRT1 prevents female reprogramming in the postnatal mammalian testis.
Sex, Specimen part
View SamplesPhosphorylation and subsequent nuclear translocation of SMAD proteins determine the cellular response to activin. Here we identify a novel means by which activin signalling is regulated to enable developmental stage-specific SMAD gene transcription. In response to activin A, immature proliferating mouse Sertoli cells exhibit nuclear accumulation of SMAD3, but not SMAD2, although both proteins are phosphorylated. In post-mitotic differentiating cells, both SMAD2 and SMAD3 accumulate in the nucleus. Furthermore, immature Sertoli cells are sensitive to activin dosage; at higher concentrations maximal SMAD3 nuclear accumulation is observed, accompanied by a small, but significant, increase in nuclear SMAD2. Microarray analysis confirmed that differential SMAD utilization correlated with altered transcriptional outcomes and identified new activin target genes, Gja1 and Serpina5, which are known to be required for Sertoli cell development and male fertility. In immature Sertoli cells, genetic or transient knockdown of SMAD3 enhanced SMAD2 nuclear accumulation in response to activin, with increased Serpina5 mRNA levels associated with nuclear localized SMAD2. In transgenic mice with altered activin bioactivity that display male fertility phenotypes, testicular Gja1 and Serpina5 mRNA levels reflected altered in vivo activin levels. We conclude that regulated nuclear accumulation of phosphorylated SMAD2 is a novel determinant of developmentally regulated activin signalling.
Developmentally regulated SMAD2 and SMAD3 utilization directs activin signaling outcomes.
No sample metadata fields
View SamplesDmrt1 (doublesex and mab-3 related transcription factor 1) is a conserved transcriptional regulator of male differentiation required for testicular development in vertebrates. In mice of the 129Sv strain, loss of Dmrt1 causes a high incidence of teratomas. Mutant 129Sv germ cells undergo apparently normal differentiation up to embryonic day 13.5 (E13.5), but some cells fail to arrest mitosis and ectopically express pluripotency markers. Expression analysis and chromatin immunoprecipitation identified DMRT1 target genes whose misexpression may underly teratoma formation.
The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency.
Specimen part
View SamplesTemporal geneome profiling of T cell transfer colitis model
Temporal genome expression profile analysis during t-cell-mediated colitis: identification of novel targets and pathways.
Specimen part, Treatment, Time
View SamplesRegulation of mRNA stability by RNA-protein interactions contributes significantly to quantitative aspects of gene expression. We have identified potential mRNA targets of the AU-rich element binding protein AUF1. Myc-tagged AUF1 p42 was induced in mouse NIH-3T3 cells and RNA-protein complexes isolated using anti-myc tag antibody beads. Bound mRNAs were analyzed with Affymetrix microarrays. We have identified 508 potential target mRNAs that were at least 3-fold enriched compared to control cells without myc-AUF1. 22.3% of the enriched mRNAs had an AU-rich cluster in the ARED Organism database, against 16.3% of non-enriched control mRNAs. The enrichment towards AU-rich elements was also visible by AREScore with an average value of 5.2 in the enriched mRNAs versus 4.2 in the control group. Yet, many mRNAs were enriched without a high ARE score suggesting that AUF1 has a broader binding spectrum than standard AUUUA repeats. AUF1 did not preferentially bind to unstable mRNAs. Still, some enriched mRNAs were highly unstable, as those of TNFSF11 (known as RANKL), KLF10, HES1, CCNT2, SMAD6, and BCL6. We have mapped some of the instability determinants. HES1 mRNA appeared to have a coding region determinant. Detailed analysis of the RANKL and BCL6 3UTR revealed for both that full instability required two elements, which are conserved in evolution. In RANKL mRNA both elements are AU-rich and separated by 30 bases, while in BCL6 mRNA one is AU-rich and 60 bases from a non AU-rich element that potentially forms a stem-loop structure.
Short-lived AUF1 p42-binding mRNAs of RANKL and BCL6 have two distinct instability elements each.
Cell line
View SamplesIn order to characterize gene expression networks linked to AT1 angiotensin receptors in the kidney, we carried out genome-wide transcriptional analysis of RNA from kidneys of wild-type (WT) and AT1A receptor-deficient mice (KOs) at baseline and after 2 days of angiotensin II infusion (1 ug/kg/min), using Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. At baseline, 405 genes were differentially expressed (>1.5X) between WT and KO kidneys. Of these, more than 80% were up-regulated in the KO group including genes involved in inflammation, oxidative stress, and cell proliferation. After 2 days of angiotensin II infusion in WT mice, expression of ~805 genes was altered (18% up-regulated, 82% repressed). Genes in metabolism and ion transport pathways were up-regulated while there was attenuated expression of protective genes against oxidative stress including glutathione synthetase and mitochondrial SOD2. Angiotensin II infusion has little effect on blood pressure in KOs. Nonetheless, expression of more than 250 genes was altered in kidneys from KO mice during angiotensin II infusion; 14% were up-regulated, while 86% were repressed including genes involved in immune responses, angiogenesis, and glutathione metabolism. Between WT and KO kidneys during angiotensin II infusion, 728 genes were differentially expressed; 10% were increased and 90% were decreased in the WT group. Differentially regulated pathways included those involved in ion transport, immune responses, metabolism, apoptosis, cell proliferation, and oxidative stress. This genome-wide assessment should facilitate identification of critical distal pathways linked to blood pressure regulation.
Gene expression profiles linked to AT1 angiotensin receptors in the kidney.
Sex, Specimen part, Treatment
View Samples