The transcription co-factor FOG1 interacts with the chromatin remodeling complex NuRD to mediate gene activation and gene repression during hematopoiesis. We have generated mice with a targeted mutation in the endogenous Fog1 locus that results in an N-ternimal mutation in FOG1 that disrupts the interaction with NuRD.
Pleiotropic platelet defects in mice with disrupted FOG1-NuRD interaction.
Specimen part
View SamplesWe compared the aorta of 6-weeks-old mice (young) with 18-months-old mice (old). Using the publicly available tools Sylamer and DIANA-mirExTra, we identified an enrichment for miR-29 binding sites in the 3'UTR of genes downregulated in the aged aortas. We subsequently showed that inhibition of miR-29 in aged mice prevented dilation of the aorta.
MicroRNA-29 in aortic dilation: implications for aneurysm formation.
Age, Specimen part
View SamplesWe used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey generally correlates with the extent of Hey-binding to target promoters, subsequent Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4.
Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.
No sample metadata fields
View SamplesL-3,4-dihydroxyphenylalanine (levodopa) treatment is the major pharmacotherapy for Parkinson's disease. However, almost all patients receiving levodopa eventually develop debilitating involuntary movements (dyskinesia). While it is known that striatal spiny projection neurons (SPNs) are involved in the genesis of this movement disorder, the molecular basis of dyskinesia is not understood. In this study, we identify distinct cell-type-specific gene expression changes that occur in sub-classes of SPNs upon induction of a parkinsonian lesion followed by chronic levodopa treatment. We identify several hundred genes whose expression is correlated with levodopa dose, many of which are under the control of AP-1 and ERK signaling. In spite of homeostatic adaptations involving several signaling modulators, AP-1-dependent gene expression remains highly dysregulated in direct pathway SPNs (dSPNs) upon chronic levodopa treatment. We also discuss which molecular pathways are most likely to dampen abnormal dopaminoceptive signaling in spiny projection neurons, hence providing potential targets for antidyskinetic treatments in Parkinson's disease.
Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia.
Specimen part, Treatment
View SamplesComparative analysis can provide important insights into complex biological systems. As demonstrated in the accompanying paper, Translating Ribosome Affinity Purification (TRAP), permits comprehensive studies of translated mRNAs in genetically defined cell populations following physiological perturbations.
Application of a translational profiling approach for the comparative analysis of CNS cell types.
No sample metadata fields
View SamplesThe cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.
A translational profiling approach for the molecular characterization of CNS cell types.
No sample metadata fields
View SamplesThe cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.
A translational profiling approach for the molecular characterization of CNS cell types.
No sample metadata fields
View SamplesThe cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.
A translational profiling approach for the molecular characterization of CNS cell types.
No sample metadata fields
View SamplesAffymetrix gene expression AID-GFP-positive vs AID-GFP-negative
The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia.
No sample metadata fields
View SamplesPrecursor B-lineage acute lymphoblastic leukemia (pre-B ALL) can be subdivided into different categories based on genetic abnormalities.
Pre-B cell receptor-mediated cell cycle arrest in Philadelphia chromosome-positive acute lymphoblastic leukemia requires IKAROS function.
Specimen part
View Samples