Genomic profiling of bleomycin- and saline-treated mice across 7 timepoints (1, 2, 7, 14, 21, 28, 35 days post treatment) was carried out in C57BL6/J mice to determine the phases of response to bleomycin treatment which correspond to onset of active pulmonary fibrosis.
Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease.
Sex, Specimen part, Treatment, Time
View SamplesRepair of injured muscle involves repair of injured myofibers through the involvement of dysferlin and its interacting partners, including annexin. Studies with mice and patients have established that dysferlin deficit leads to chronic inflammation and adipogenic replacement of the diseased muscle. However, longitudinal analysis of annexin deficit on muscle pathology and function is lacking. Here we show that unlike annexin A1, but similar to dysferlin, lack of annexin A2 (AnxA2) causes poor myofiber repair and progressive weakening with age. However, unlike dysferlin-deficient muscle, AnxA2-deficient muscles do not exhibit chronic inflammation or adipogenic replacement. Deletion of AnxA2 in dysferlin deficient mice reduces inflammation, adipogenic replacement, and loss in muscle function caused by dysferlin deficit. These results show that: a) AnxA2 facilitates myofiber repair, b) chronic inflammation and adipogenic replacement of dysferlinopathic muscle requires AnxA2, and c) inhibiting AnxA2-mediated inflammation is a novel therapeutic avenue for dysferlinopathy.
Annexin A2 links poor myofiber repair with inflammation and adipogenic replacement of the injured muscle.
Age, Specimen part
View SamplesSmall intestine of a pool of three Wt mice and a pool of 3 IL-9tg mice in a balb/c backround.
IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity.
No sample metadata fields
View SamplesEnhanced prenatal fatty streak formation in human fetuses has been associated with maternal hypercholesterolemia. However, the possible roles of maternal genetic background and in utero environment on development of atherosclerosis in adult life have not been unraveled. We generated genetically identical heterozygous apoE-deficient mice offspring with a different maternal background to study the intrauterine effect of maternal genotype and associated hypercholesterolemia on the developing vascular system. As read out for increased atherosclerosis development in adult life, a constrictive collar was placed around the carotid artery to induce lesion formation. A significant increase in endothelial cell activation and damage was detected in the carotid arteries of heterozygous apoE-deficient fetuses with apoE-deficient mothers compared with offspring from wild type mothers, but no fatty streak formation was observed. Postnatally, all carotid arteries revealed normal morphology. In adult offspring with maternal apoE-deficiency, the constrictive collar resulted in severe lesion (9/10) development compared with no to only minor lesions (2/10) in offspring of wild type mothers. Microarray analysis showed no effect of maternal apoE-deficiency on gene expression in adult offspring. We conclude that maternal apoE-deficiency not only affects fetal arteries, but also increases the susceptibility for development of collar-induced atherosclerosis in adult life.
Intrauterine exposure to maternal atherosclerotic risk factors increases the susceptibility to atherosclerosis in adult life.
No sample metadata fields
View SamplesGenomic technologies have unmasked molecularly distinct subgroups among tumors of the same histological type; but understanding the biologic basis of these subgroups has proved difficult since their defining alterations are often numerous, and the cellular origins of most cancers remain unknown. We sought to decipher complex genomic data sets by matching the genetic alterations contained within these, with candidate cells of origin, to generate accurate disease models. Using an integrated genomic analysis we first identified subgroups of human ependymoma: a form of neural tumor that arises throughout the central nervous system (CNS). Validated alterations included amplifications and homozygous deletions of genes not yet implicated in ependymoma. Matching the transcriptomes of human ependymoma subgroups to those of distinct types of mouse radial glia (RG)neural stem cells (NSCs) that we identified previously to be a candidate cell of origin of ependymoma - allowed us to select RG types most likely to represent cells of origin of disease subgroups. The transcriptome of human cerebral ependymomas that amplify EPHB2 and delete INK4A/ARF matched most closely that of embryonic cerebral Ink4a/Arf-/- RG: remarkably, activation of EphB2 signaling in this RG type, but not others, generated highly penetrant ependymomas that modeled accurately the histology and transcriptome of one human cerebral tumor subgroup (subgroup D). Further comparative genomic analysis revealed selective alterations in the copy number and expression of genes that regulate neural differentiation, particularly synaptogenesis, in both mouse and human subgroup D ependymomas; pinpointing this pathway as a previously unknown target of ependymoma tumorigenesis. Our data demonstrate the power of comparative genomics to sift complex genetic data sets to identify key molecular alterations in cancer subgroups.
Cross-species genomics matches driver mutations and cell compartments to model ependymoma.
Sex, Age, Specimen part, Disease, Disease stage
View Samples