The goal of this study was to identify the molecular characteristics and putative markers distinguishing IL-10eGFP+CD138hi and IL-10eGFP-CD138hi plasmocytes. To this end, IL-10eGFP B-green mice were challenged intravenously with Salmonella typhimurium (strain SL7207, 10e7 CFU), and IL-10eGFP+CD138hi as well as IL-10eGFP-CD138hi plasmocytes were isolated from the spleen on the next day. For this, single cell suspensions were prepared, cells were treated with Fc block (10 g/ml, anti-CD16/CD32, clone 2.4G2), and then stained with an antibody against CD138 conjugated to PE (1/400; from BD Pharmingen) followed by incubation with anti-PE microbeads (Miltenyi Biotech). CD138+ cells were then enriched on Automacs (Miltenyi Biotech) using the program possel_d2. Cells were then stained with anti-CD19-PerCP, anti-CD138-PE, and antibodies against CD11b, CD11c, and TCR conjugated to APC as a dump channel to exclude possible contaminants. DAPI was added to exclude dead cells. Live IL-10eGFP+CD138hi and IL-10eGFP-CD138hi cells were subsequently isolated on a cell sorter. The purity of the samples was always above 98%. This led to the identification of LAG-3 as a cell surface receptor specifically expressed on IL-10eGFP+CD138hi cells but not on IL-10eGFP-CD138hi cells.
LAG-3 Inhibitory Receptor Expression Identifies Immunosuppressive Natural Regulatory Plasma Cells.
Sex, Specimen part
View SamplesBALB/c mice are susceptible to proteoglycan (PG) aggrecan-induced arthritis (PGIA), and the absence of TSG-6 further increases susceptibility and local inflammatory reactions, including neutrophil invasion into the joints. To gain insight into the mechanisms of TSG-6 action, synovial fibroblasts were isolated from wild-type and TSG-6-KO mice, cultured and exposed to various agents affecting either the TSG-6 expression and/or modify the intracellular function of TSG-6.
TSG-6 protein, a negative regulator of inflammatory arthritis, forms a ternary complex with murine mast cell tryptases and heparin.
Sex, Treatment
View SamplesBALB/c mice are susceptible to proteoglycan (PG) aggrecan-induced arthritis (PGIA), a murine model of rheumatoid arthritis (Glant,T.T. and Mikecz,K., Proteoglycan aggrecan-induced arthritis. A murine autoimmune model of rheumatoid arthritis. Methods Mol.Med. 2004. 102: 313-338.). However, there are marked differences among BALB/c colonies (maintained by different vendors at different locations) in PGIA onset and severity, which could be the result of subtle variations in their genetic background.
BALB/c mice genetically susceptible to proteoglycan-induced arthritis and spondylitis show colony-dependent differences in disease penetrance.
Sex
View SamplesDiet-induced obesity (DIO) is rapidly becoming a global health problem, particularly as Westernization of emerging nations continues. Currently, one third of adult Americans are considered obese and, if current trends continue, >90% of US citizens are predicted to be affected by 2050. However, efforts to fight this epidemic have not yet produced sound solutions for prevention or treatment. Our studies reveal a balanced and chronobiological relationship between food consumption, daily variation in gut microbial evenness and function, basomedial hypothalamic circadian clock (CC) gene expression, and key hepatic metabolic regulatory networks , including CC and nuclear receptors (NR), that is are essential for metabolic homeostasis. Western diets high in saturated fats dramatically alter diurnal variation in microbial composition and function, which in turn lead to uncoupling of the hepatic CC and NR networks from central CC control in ways that offset the timing and types of regulatory factors directing metabolic function. These signals include microbial metabolites such as short chain fatty acids (SCFAs) and hydrogen sulfide (H2S) that can directly regulate or disrupt metabolic networks of the hepatocyte. Our study therefore provides insights into the complex and dynamic relationships between diet, gut microbes, and the host that are critical for maintenance of health. Perturbations of this constellation of processes, in this case by diet-induced dysbiosis and its metabolomic signaling, can potentially promote metabolic imbalances and disease. This knowledge opens up many possibilities for novel therapeutic and interventional strategies to treat and prevent DIO, ranging from the manipulation of gut microbial function to pharmacological targeting of host pathways to restore metabolic balance.
Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.
Specimen part
View Samples