The objective of this set of samples is to identify genes that are differentially expressed following the introduction of DNA double strand breaks (DSBs) by ionizing radiation in wild-type murine pre-B cells. The data generated in this project will be compared to the data generated in GSE9024, in which genes that are differentially expressed following the introduction of DNA double strand breaks (DSBs) by the Rag proteins in murine pre-B cells were examined. In order to understand the differences between the physiologic and genotoxic responses to DSB DNA damage, we need to compare cells that are all in the same compartment of the cell cycle. We are therefore examining the response to IR-induced damage in cells that are arrested in G1, which would correspond to our previous study of G1 arrested cells with Rag-induced breaks. This will illuminate the difference directly, allowing us to better understand the signaling responses to the different types of DNA damage.
DNA damage activates a complex transcriptional response in murine lymphocytes that includes both physiological and cancer-predisposition programs.
Specimen part
View SamplesThe objective is to identify genes that are differentially expressed following the introduction of DNA double strand breaks (DSBs) by the Rag proteins in murine pre-B cells. Cells lacking Artemis are used since the Rag-induced DSBs will not be repaired and, thus, will provide a continuous stimulus to the cell. Cells lacking Artemis and Atm are used to determine which gene expression changes depend on Atm and cells lacking Artemis that express an I kappa B alpha dominant negative are used to determine which gene expression changes depend on NFkB.
DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes.
No sample metadata fields
View Samples