This SuperSeries is composed of the SubSeries listed below.
DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.
Sex, Specimen part
View SamplesEmbryogenesis is tightly regulated by multiple levels of epigenetic systems such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent reprogramming occurs by de novo methylation and demethylation. Variance of DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analysed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions in the three germ layers and in the three adult somatic tissues are shared in common. This commonly methylated gene set is enriched in germ cell associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns with global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Taken together, our findings indicate that differentiation from ES cells to the three germ layers is accompanied by an increase in the number of commonly methylated DNA regions and that these tissue-specific alterations are present for only a small number of genes. Our findings indicate that DNA methylation at the proximal promoter regions of commonly methylated genes act as an irreversible mark which fixes somatic lineage by repressing transcription of germ cell specific genes.
DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.
Sex, Specimen part
View SamplesThe roles of histone demethylase KDM7 in gene expression were analyzed by gene expression profiling experiments with the mouse neuroblastoma cell line Neuro2A.
KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development.
Specimen part, Cell line
View SamplesWinged bean (WB), Psophocarpus tetragonolobus, is a tropical legume, the potential of which is not yet been understood. We found that a 5 week-oral administration of WB seed extract inhibited wrinkle formation induced by repeated tape stripping (TS), which is a model of lichenification in human chronic eczematous dermatitis.
Effect of oral intake of winged bean extract on a skin lichenification model: evaluation by microarray analysis.
Sex, Age, Specimen part, Treatment
View SamplesWe used microarrays to compare the expression profiles between brains of BCAS1 knockout and wild type mice
Mice lacking BCAS1, a novel myelin-associated protein, display hypomyelination, schizophrenia-like abnormal behaviors, and upregulation of inflammatory genes in the brain.
Sex, Specimen part
View SamplesLactic acid bacteria confer a variety of health benefits. Here we investigate the mechanisms by which Lactobacillus brevis KB290 enhances cell-mediated cytotoxic activity. We fed a diet containing KB290 (3 10^9 colony-forming units/g) , or potato starch, to 9-week-old female BALB/c mice for 1, 4, 7, or 14 days and examined the cytotoxic activity of splenocytes was measured. RNA was extracted from the spleen and analyzed for gene expression by DNA microarray.
Effect of Lactobacillus brevis KB290 on the cell-mediated cytotoxic activity of mouse splenocytes: a DNA microarray analysis.
Sex, Age, Specimen part
View SamplesAquaporin-11 (AQP11), a new member of the aquaporin family, is localized in the endoplasmic reticulum (ER). Aqp11/ mice neonatally suffer from polycystic kidneys derived from the proximal tubule. Its onset is proceeded by the vacuolization of ER. However, the mechanism for the formation of vacuoles and the development of cysts remain to be clarified. Here, we show that Aqp11/ mice and polycystic kidney disease animals share a common pathogenic mechanism of cyst formation.
Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation.
Sex, Age, Specimen part
View SamplesDietary collagen hydrolysate has been conjectured to improve skin barrier function. To investigate the effect of long-term collagen hydrolysate administration on the skin, we evaluated stratum corneum water content and skin elasticity in intrinsic aged mice. Female 9-week-old hairless mice were fed a control diet, or a collagen hydrolysate-containing diet, for 12 weeks. The stratum corneum water content and skin elasticity were sequentially decreased by chronological aging in control mice. Intake of collagen hydrolysate significantly suppressed such changes. Moreover, we comprehensively analyzed gene expression in the skin of mouse, which had been administered collagen hydrolysate, using DNA microarray. Twelve weeks after start of collagen intake, no significant differences appeared in gene expression profile compared to that of control group. However, 1 week after administration, 135 genes were up-regulated and 448 genes were down-regulated in collagen group compared to control group. It is indicate that gene changes preceded changes of barrier function and elasticity. We focused on several genes correlated with functional changes in the skin. Gene Ontology terms, especially related to epidermal cell development, were signicantly enriched in up-regulated genes. These skin function-related genes had properties that facilitate epidermal production and differentiation and suppress dermal degradation. Thus, dietary collagen hydrolysate induced positive gene changes. In conclusion, our results suggest that alteration of gene expression at early stages after collagen administration affect skin barrier function and mechanical properties. Long-term oral intake of collagen hydrolysate improves skin dysfunction by regulating genes related to production and maintenance of the skin tissue.
Effect of orally administered collagen hydrolysate on gene expression profiles in mouse skin: a DNA microarray analysis.
Sex, Age, Specimen part, Treatment
View SamplesIngestion of collagen peptide elicits beneficial effects on the body. Improvement of blood lipid is one of the effects, but its mechanism remains unclear. Male BALB/cCrSlc mice were bred with the AIN-93M diet containing 14% casein or AIN-93M-based low-protein diet containing 10% casein or diet containing 6% casein+4% collagen peptide (n=12/group) for 10 weeksTotal, free, and esterified cholesterol levels in the blood decreased in the collagen peptide group. DNA microarray analysis of the liver revealed that expression of the genes related to lipid metabolic process, such as PPAR signaling pathway and fatty acid metabolism, increased in the collagen peptide group compared to the 10% casein group. In contrast, expression of the genes related to unfolded protein response (UPR) and protein level of phospho-IRE1 decreased. Our data suggest that lipid metabolism in the liver was altered by collagen ingestion, which probably results in the decreased levels of blood cholesterol.
Collagen peptide ingestion alters lipid metabolism-related gene expression and the unfolded protein response in mouse liver.
Sex, Age, Specimen part
View SamplesBisphenol A (BPA), an endocrine-disrupting chemical (EDC), is a well-known, ubiquitous estrogenic chemical. To investigate the effects of fetal exposure to low-dose BPA on the development of the prostate, we first examined the alterations of in situ sex steroid hormonal environment in the mouse urogenital sinus (UGS).
Endocrine disrupter bisphenol A increases in situ estrogen production in the mouse urogenital sinus.
Specimen part
View Samples