Imbalances in glucose and energy homeostasis are at the core of the worldwide epidemic of obesity and diabetes. Here, we illustrate an important role of the TGF-beta/Smad3 signaling pathway in regulating glucose and energy homeostasis. Smad3 deficient mice are protected from diet-induced obesity and diabetes. Interestingly, the metabolic protection is accompanied by Smad3-/- white adipose tissue acquiring the bioenergetic and gene expression profile of brown fat/skeletal muscle. Smad3-/- adipocytes demonstrate a marked increase in mitochondrial biogenesis, with a corresponding increase in basal respiration, and Smad3 acts as a repressor of PGC-alpha1 expression. We observe significant correlation between TGF-beta1 levels and adiposity in rodents and humans. Further, systemic blockade of TGF-beta1 signaling protects mice from obesity, diabetes and hepatic steatosis. Together, these results demonstrate that TGF-beta signaling regulates glucose tolerance and energy homeostasis and suggest that modulation of TGF-beta1 activity might be an effective treatment strategy for obesity and diabetes.
Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling.
Treatment
View Samplessmall RNA libraries from wild-type and Hen1 mutant testes were made with either polyA tailing (VASAGFPHen1minus/plus) or adapter ligation (Hen1Testis and WTTestis) and sequenced on an Illumina GAII platform. Overall design: RNA was isolated from total testis tissue of both Hen1 wildtype and Hen1 mutant animals. After size selection from gel, the small RNA libraries wre made.
Hen1 is required for oocyte development and piRNA stability in zebrafish.
No sample metadata fields
View SamplesWe previously generated genetically engineered mouse (GEM) models based on perturbation of Tp53, Rb with or without Brca1 or Brca2 that develop serous epithelial ovarian cancer (SEOC) closely resembling the human disease on histologic and molecular levels. We have adapted these GEM models to orthotopic allografts that uniformly develop tumors with short latency in immunocompetent recipients and are ideally suited for routine preclinical studies. To monitor passaged tumors at the molecular level, we analyzed transcriptional profiles of a set of primary SEOC and matching derived passaged tumors. We have merged this dataset with previously published ( doi: 10.1158/0008-5472.CAN-11-3834; PMID 22617326) dataset of murine primary ovarian tumors from our GEM models (GSE46169) and merged and compared them to expression profiles of human dataset published previously (doi: 10.1038/nature10166).
Pathway-specific engineered mouse allograft models functionally recapitulate human serous epithelial ovarian cancer.
Specimen part
View SamplesIL-2 signals into CD8 T cells have a programming and regulatory role in driving cells to full effector and memory differentiation. This study was designed to look for IL-2 target genes that affect CD8 T cell responses.
Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection.
Sex, Specimen part
View SamplesPurpose: To identify the changes in postnatal mouse conjunctival forniceal gene expression and their regulation by Klf4 around eye opening stage when the goblet cells first appear.
Mouse conjunctival forniceal gene expression during postnatal development and its regulation by Kruppel-like factor 4.
No sample metadata fields
View SamplesChronic opiate use produces molecular and cellular adaptations in the nervous system, leading to tolerance, physical dependence and addiction. Genome-wide comparison of morphine-induced changes in brain transcription of mouse strains with different opioid-related phenotypes provides an opportunity to discover the relationship between gene expression and behavioral response to the drug.
Morphine effects on striatal transcriptome in mice.
No sample metadata fields
View SamplesThere is massive destruction of transcripts during maturation of mouse oocytes. The objective of this project was to identify and characterize the transcripts that are degraded versus those that are stable during the transcriptionally silent germinal vesicle (GV)-stage to metaphase II (MII)-stage transition using the microarray approach. A system for oocyte transcript amplification using both internal and 3-poly(A) priming was utilized to minimize the impact of complex variations in transcript polyadenylation prevalent during this transition. Transcripts were identified and quantified using Affymetrix Mouse Genome 430 v2.0 GeneChip. The significantly changed and stable transcripts were analyzed using Ingenuity Pathways Analysis and GenMAPP/MAPPFinder to characterize the biological themes underlying global changes in oocyte transcripts during maturation. It was concluded that the destruction of transcripts during the GV to MII transition is a selective rather than promiscuous process in mouse oocytes. In general, transcripts involved in processes that are associated with meiotic arrest at the GV-stage and the progression of oocyte maturation, such as oxidative phosphorylation, energy production, and protein synthesis and metabolism, were dramatically degraded. In contrast, transcripts encoding participants in signaling pathways essential for maintaining the unique characteristics of the MII-arrested oocyte, such as those involved in protein kinase pathways, were the most prominent among those stables.
Selective degradation of transcripts during meiotic maturation of mouse oocytes.
No sample metadata fields
View SamplesWe previously found that mice with heterozygous knockout of the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha-CaMKII HKO mice) show various dysregulated behaviors, including cyclic variations in locomotor activity (LA), suggesting that alpha-CaMKII HKO mice may serve as an animal model showing infradian oscillation of mood. We performed gene expression microarray analysis of dentate gyrus from alpha-CaMKII HKO mice. Mice were selected for the sampling such that their LA levels varied among the mice.
Circadian Gene Circuitry Predicts Hyperactive Behavior in a Mood Disorder Mouse Model.
Specimen part
View SamplesMicroarrays of gene expression in mouse germinal center B cells photoactivated in the light zone or dark zone, and of nave cells for comparison.
Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter.
Specimen part
View Samples-catenin signaling is required for hair follicle development, but it is unknown whether it is sufficient to activate expression of hair follicle genes in embryonic skin. To address this we profiled gene expression in dermis from E15.5 KRT14-Cre Ctnnb1(Ex3)fl/+ embryos carrying an activating mutation in epithelial beta-catenin, and control littermate embryos.
Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling.
No sample metadata fields
View Samples