Endothelial inflammation contributes to the pathogenesis of numerous human diseases; however, the role of tumor endothelial inflammation in the growth of experimental tumors and its influence on the prognosis of human cancers is less understood. TNF-, an important mediator of tumor stromal inflammation, is known to target the tumor vasculature. In this study, we demonstrate that B16-F1 melanomas grew more rapidly in C57BL/6 wild-type (WT) mice than in syngeneic mice with germline deletions of both TNF- receptors (KO). This enhanced tumor growth was associated with increased COX2 inflammatory expression in WT tumor endothelium compared to endothelium in KO mice. We purified endothelial cells from WT and KO tumors and characterized dysregulated gene expression, which ultimately formed the basis of a 6-gene Inflammation-Related Endothelial-derived Gene (IREG) signature. This inflammatory signature expressed in WT tumor endothelial cells was trained in human cancer datasets and predicted a poor clinical outcome in breast cancer, colon cancer, lung cancer and glioma. Consistent with this observation, conditioned media from human endothelial cells treated with pro-inflammatory cytokines (TNF- and interferons) accelerated the growth of human colon and breast tumors in immune-deprived mice as compared with conditioned media from untreated endothelial cells. These findings demonstrate that activation of endothelial inflammatory pathways contributes to tumor growth and progression in diverse human cancers.
Tumor endothelial inflammation predicts clinical outcome in diverse human cancers.
Specimen part
View SamplesVasopressin is the major hormone that regulates renal water excretion. It does so by binding to a receptor in renal collecting duct cells, triggering signaling pathways that ultimately regulate the abundance, location, and activity of the water channel protein aquaporin 2. We took an advantage of quantitative large scale proteomic technologies and oligonucleotide microarrays to quantify steady state changes in protein and transcript abundances in response to vasopressin in a collecting duct cell line, mpkCCD clone 11 (Yu et al. PNAS 2009, 106:2441-2446). This cell line originally developed by Alan Vandewalles group recapitulates vasopressin-mediated AQP2 expression and phosphorylation as seen in native colleting duct cells.
Quantitative protein and mRNA profiling shows selective post-transcriptional control of protein expression by vasopressin in kidney cells.
Specimen part, Cell line
View SamplesA series contains a set of transcript intensity values measured by Affymetrix microarray.
Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct.
Sex, Specimen part
View SamplesThis series of microarray data contain transcript intensity of mpkCCD cells.
Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct.
No sample metadata fields
View SamplesOrigins of the brain tumor, medulloblastoma, from stem cells or restricted pro-genitor cells are unclear. To investigate this, we activated oncogenic Hedgehog signaling in multipotent and lineage-restricted CNS progenitors. We observed that normal unipo-tent cerebellar granule neuron precursors (CGNP) derive from hGFAP+ and Olig2+ rhombic lip progenitors. Hedgehog activation in a spectrum of early and late stage CNS progenitors generated similar medulloblastomas, but not other brain cancers, indicating that acquisition of CGNP identity is essential for tumorigenesis. We show in human and mouse medulloblastoma that cells expressing the glia-associated markers Gfap and Olig2 are neoplastic and that they retain features of embryonic-type granule lineage progenitors. Thus, oncogenic Hedgehog signaling promotes medulloblastoma from lineage-restricted granule cell progenitors.
Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma.
No sample metadata fields
View Samples