This data series was used for two separate studies. The initial study was aimed to idenify expression changes brought about by the Cecr2Gt45Bic mutation during neural closure. The study included two different strains, BALB/cCrl in which Cecr2GT45Bic shows a neural tube defect phenotype and FVB/N in which Cecr2Gt45Bic does not manifest neural closure defects. The second was to idenify strain specific expression differences present during neural closure of the mouse embryo between BALB/cCrl and FVB/N in order to identify candidate modifiers of the Cecr2Gt45Bic neural tube defect. Relevant abstracts are included below.
Strain-specific modifier genes of Cecr2-associated exencephaly in mice: genetic analysis and identification of differentially expressed candidate genes.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Adult rat bones maintain distinct regionalized expression of markers associated with their development.
Sex, Specimen part, Treatment
View SamplesPilot study
Adult rat bones maintain distinct regionalized expression of markers associated with their development.
Sex, Specimen part
View SamplesThe role of PDK1 on mammary tumorigenesis and its interaction with PPARdelta, was assessed. Transgenic mice were generated in which PDK1 was expressed in the mammary epithelium.
PPARδ activation acts cooperatively with 3-phosphoinositide-dependent protein kinase-1 to enhance mammary tumorigenesis.
Specimen part, Treatment
View SamplesBackground and Aims: In the interleukin-10-deficient (Il10-/-) mouse model of IBD, 10 quantitative trait loci (QTL) have been shown to be associated with colitis susceptibility by linkage analyses on experimental crosses of highly susceptible C3H/HeJBir (C3Bir)-Il10-/- and partially resistant C57BL/6J (B6)-Il10-/- mice. The strongest locus (C3Bir-derived cytokine deficiency-induced colitis susceptibility [Cdcs]1 on Chromosome [Chr] 3) controlled multiple colitogenic subphenotypes and contributed the vast majority to the phenotypic variance in cecum and colon. This was demonstrated by interval-specific Chr 3 congenic mice wherein defined regions of Cdcs1 from C3Bir or B6 were bred into the IL-10-deficient reciprocal background and altered the susceptible or resistant phenotype. Furthermore, this locus likely acts by inducing innate hypo- and adaptive hyperresponsiveness, associated with impaired NFB responses of macrophages. The aim of the present study was to dissect the complexity of Cdcs1 by further development and characterization of reciprocal Cdcs1 congenic strains and to identify potential candidate genes in the congenic interval. Material and Methods: In total, 15 reciprocal congenic strains were generated from Il10-/- mice of either C3H/HeJBir or C57BL/6J backgrounds by 10 cycles of backcrossing. Colitis activity was monitored by histological grading. Candidate genes were identified by fine mapping of congenic intervals, sequencing, microarray analysis and a high-throughput real-time RT-PCR approach using bone marrow-derived macrophages. Results: Within the originally identified Cdcs1-interval, three independent regions were detected that likely contain susceptibility-determining genetic factors (Cdcs1.1, Cdcs1.2, and Cdcs1.3). Combining results of candidate gene approaches revealed Fcgr1, Cnn3, Larp7, and Alpk1 as highly attractive candidate genes with polymorphisms in coding or regulatory regions and expression differences between susceptible and resistant mouse strains. Conclusions: Subcongenic analysis of the major susceptibility locus Cdcs1 on mouse chromosome 3 revealed a complex genetic structure. Candidate gene approaches revealed attractive genes within the identified regions with homologs that are located in human susceptibility regions for IBD.
Cdcs1 a major colitis susceptibility locus in mice; subcongenic analysis reveals genetic complexity.
Sex, Specimen part
View SamplesDown syndrome is the most common form of genetic mental retardation. How Trisomy 21 causes mental retardation remains unclear and its effects on adult neurogenesis have not been addressed. To gain insight into the mechanisms causing mental retardation we used microarrays to investigate gene expression differences between Ts1Cje (a mouse model of Down syndrome) and C57BL/6 littermate control neurospheres. The neurospheres were generated from neural stem cells and progenitors isolated from the lateral walls of the lateral ventricles from adult mice.
Gene network disruptions and neurogenesis defects in the adult Ts1Cje mouse model of Down syndrome.
Sex, Disease
View SamplesIn this study that was specifically designed to identify early stages of glaucoma in DBA/2J mice, we used genome-wide expression profiling and a series of computational methods. Our methods successfully subdivided eyes with no detectable glaucoma by conventional assays into molecularly defined stages of disease. These stages represent a temporally ordered sequence of glaucoma states. Using an array of tools, we then determined networks and biological processes that are altered at these early stages. Our strategy proved very sensitive, suggesting that similar approaches will be valuable for uncovering early processes in other complex, later-onset diseases. Early changes included upregulation of both the complement cascade and endothelin system, and so we tested the therapeutic value of separately inhibiting them. Mice with a mutation in the complement component 1a gene (C1qa) were robustly protected from glaucoma with the protection being among the greatest reported. Similarly, inhibition of the endothelin system was strongly protective. Since EDN2 is potently vasoconstrictive and was produced by microglial/macrophages, our data provide a novel link between these cell types and vascular dysfunction in glaucoma. Targeting early events such as the upregulation of the complement and endothelin pathways may provide effective new treatments for human glaucoma.
Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma.
Sex, Age, Specimen part
View SamplesAnalysis of erythroid differentiation using Gata1 gene-disrupted G1E ER4 clone cells. Estradiol addition activates an ectopically expressed Gata-1-estrogen receptor fusion protein, triggering synchronous differentiation. 30 hour time course corresponds roughly to late burst-forming unit-erythroid stage (t=0 hrs) through orthochromatic erythroblast stage (t=30 hrs).
Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression.
Specimen part
View Samplesgenes regualted by LPS or LPS+cAMP stimulation in BMDCs
Cyclic adenosine monophosphate suppresses the transcription of proinflammatory cytokines via the phosphorylated c-Fos protein.
Specimen part
View SamplesThe thymus is extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood and this capacity diminishes considerably with age. To identify alternate regeneration pathways in the thymus, we performed an unbiased transcriptome analysis of the non-hematopoietic (CD45-) stromal cell compartment of the thymus, which is less sensitive to thymic damage compared to the CD45+ hematopoietic compartment.
Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration.
Sex, Specimen part
View Samples