Genome-wide comparative gene expression analysis of callus tissue of osteoporotic mice (Col1a1-Krm2 and Lrp5-/-) and wild-type were performed to identify candidate genes that might be responsible for the impaired fracture healing observed in Col1a1-Krm2 and Lrp5-/- mice.
Osteoblast-specific Krm2 overexpression and Lrp5 deficiency have different effects on fracture healing in mice.
Sex, Age, Specimen part
View SamplesAmplification of MYCN is the most prominent genetic marker of high-stage neuroblastoma, a childhood tumor originating from the neural crest. We generated a cell line (mNB-A1) from tumors developed in transgenic mouse and treated these cells with DMSO (n=6), the BRD4-inhibitor JQ1 (n=3) or the AURKA-inhibitor MLN8237 (n=3) for 24 h.
A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies.
Specimen part, Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo.
Specimen part, Cell line
View SamplesTumor cell survival critically depends on heterotypic communication with benign cells in the microenvironment. Here we describe a novel survival signaling pathway activated in stromal cells by contact to B-cells from chronic lymphocytic leukemia (CLL) patients. The expression of PKC-II and the subsequent activation of NF-B in bone marrow stromal cells is a prerequisite to support the survival of malignant B-cells. PKC- knockout mice are insusceptible to CLL-transplantations, underscoring the in vivo significance of the PKC-II- NF-B signaling pathway in the tumor microenvironment. Upregulated stromal PKC-II in biopsies from CLL, breast- and pancreatic- cancer patients suggest that this pathway may commonly be activated in a variety of malignancies.
Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo.
Specimen part
View SamplesTumor cell survival critically depends on heterotypic communication with benign cells in the microenvironment. Here we describe a novel survival signaling pathway activated in stromal cells by contact to B-cells from chronic lymphocytic leukemia (CLL) patients. The expression of PKC-II and the subsequent activation of NF-B in bone marrow stromal cells is a prerequisite to support the survival of malignant B-cells. PKC- knockout mice are insusceptible to CLL-transplantations, underscoring the in vivo significance of the PKC-II- NF-B signaling pathway in the tumor microenvironment. Upregulated stromal PKC-II in biopsies from CLL, breast- and pancreatic- cancer patients suggest that this pathway may commonly be activated in a variety of malignancies.
Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo.
Specimen part, Cell line
View SamplesTriggering of B cell receptors (BCR) induces a massive synthesis of NFATc1 in splenic B cells. By inactivating the Nfatc1 gene and re-expressing NFATc1 we show that NFATc1 levels are critical for the survival of splenic B cells upon BCR stimulation. NFATc1 ablation led to decreased BCR-induced Ca++ flux and proliferation of splenic B cells, increased apoptosis and suppressed germinal centre formation and immunoglobulin class switch by T cell-independent antigens. By controlling IL-10 synthesis in B cells, NFATc1 supported the proliferation and IL-2 synthesis of T cells in vitro and appeared to contribute to the mild clinical course of Experimental Autoimmune Encephalomyelitis in mice bearing NFATc1-/- B cells. These data indicate NFATc1 as a key factor controlling B cell function.
NFATc1 affects mouse splenic B cell function by controlling the calcineurin--NFAT signaling network.
Specimen part
View SamplesGene expressions of murine germinal center and naive B cells on Affymetrix platform
Multiple transcription factor binding sites predict AID targeting in non-Ig genes.
No sample metadata fields
View SamplesFollowing neural tube closure at around E9.5, the rhombic lip within the rhombomere 1/isthmus region ("upper rhombic lip") produces a sequence of neuronal lineages that populate the brainstem and cerebellum. The transcription factor Atoh1 (Math1) is required for this specialized neurogenesis, although the genetic programs that delineate the temporal cell fate changes downstream of Atoh1 are not well characterized. We examined the gene expresion changes that take place within Atoh1 lineages
Genes expressed in Atoh1 neuronal lineages arising from the r1/isthmus rhombic lip.
Specimen part
View SamplesTo characterize genes, pathways, and transcriptional regulators enriched in the mouse cornea, we compared the expression profiles of whole mouse cornea, bladder, esophagus, lung, proximal small intestine, skin, stomach, and trachea.
The Ets transcription factor EHF as a regulator of cornea epithelial cell identity.
Specimen part
View SamplesThe transcriptomic changes induced in primary mouse hepatocytes (C57BL/6 ) by 7M of cisplatin after treatment for 24 and 48h
Characterisation of cisplatin-induced transcriptomics responses in primary mouse hepatocytes, HepG2 cells and mouse embryonic stem cells shows conservation of regulating transcription factor networks.
Cell line, Treatment, Time
View Samples