Metastatic disease is a primary cause of cancer-related death, and factors governing tumor cell metastasis have not been fully elucidated. Here we addressed this question by using tumor cell lines derived from mice that develop metastatic lung adenocarcinoma owing to expression of mutant K-ras and p53. A feature of metastasis-prone tumor cells that distinguished them from metastasis-incompetent tumor cells was plasticity in response to changes in their microenvironment. They transited reversibly between epithelial and mesenchymal states, forming highly polarized epithelial spheres in 3-dimensional culture that underwent epithelial-mesenchymal transition (EMT) following treatment with transforming growth factor-beta or injection into syngeneic mice. This plasticity was entirely dependent upon the microRNA-200 family, which decreased during EMT. Forced expression of miR-200 abrogated the capacity of these tumor cells to undergo EMT, invade, and metastasize and conferred transcriptional features of metastasis-incompetent tumor cells. We conclude that microenvironmental cues direct tumor metastasis by regulating miR-200 expression.
Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Expression signatures of metastatic capacity in a genetic mouse model of lung adenocarcinoma.
No sample metadata fields
View SamplesTumor cells that give rise to metastatic disease are a primary cause of cancer-related death and have not been fully elucidated in patients with lung cancer. Here, we addressed this question by using tissues from a mouse that develops metastatic lung adenocarcinoma owing to expression of mutant K-ras and p53. We identified a metastasis-prone population of tumor cells that differed from those with low metastatic capacity on the basis of having sphere-forming capacity in Matrigel cultures, increased expression of CD133 and Notch ligands, and relatively low tumorigenicity in syngeneic mice. Knockdown of jagged1 or pharmacologic inhibition of its downstream mediator phosphatidylinositol 3-kinase abrogated the metastatic but not the tumorigenic activity of these cells. We conclude from these studies on a mouse model of lung adenocarcinoma that CD133 and Notch ligands mark a population of metastasis-prone tumor cells and that the efficacy of Notch inhibitors in metastasis prevention should be explored.
The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice.
Specimen part
View SamplesOur study in zebrafish is the first to use an animal model to understand the biology of the developmental disorder Roberts Syndrome (RBS). RBS is caused by mutations in the ESCO2 gene.
A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle.
Age, Specimen part
View SamplesThe generation of properly functioning gametes in vitro, a key goal in developmental/reproductive biology, requires multi-step reconstitutions of complex germ cell development. Based on the logic of primordial germ cell (PGC)-specification, we demonstrate here the generation of PGC-like cells (PGCLCs) in mice with robust capacity for spermatogenesis from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) through epiblast-like cells (EpiLCs), a cellular state highly similar to pre-gastrulating epiblasts, but distinct from epiblast stem cells (EpiSCs). The global transcription profiles, epigenetic reprogramming, and cellular dynamics during PGCLC induction from EpiLCs are a meticulous capture of those associated with PGC specification from the epiblasts. Furthermore, we identify Integrin-beta 3 and SSEA1 as markers that purify PGCLCs with spermatogenic capacity free from tumorigenic undifferentiated cells. With the reconstitution of PGC specification pathway from the naive inner cell mass state, our study defines a paradigm for the essential step of in vitro gametogenesis.
Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells.
Specimen part
View SamplesTAZ-deficient mice have the abnormalities in the lung development. We expect the comparison of the gene expression profiles of TAZ-deficient and wild-type lungs would reveal the underlying mechanisms.
Transcriptional coactivator with PDZ-binding motif is essential for normal alveolarization in mice.
No sample metadata fields
View SamplesOptimal treatment for nonalcoholic steatohepatitis (NASH) has not yet been established, particularly for individuals without diabetes.
Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis.
Specimen part
View SamplesThe onset of the liver inflamentation in the Sox17+/- embryos.
Sox17 haploinsufficiency results in perinatal biliary atresia and hepatitis in C57BL/6 background mice.
Specimen part
View SamplesOne of the central issues in evolutionary developmental biology is how we can formulate the relationships between evolutionary and developmental processes. Two major models have been proposed: the 'funnel-like' model, in which the earliest embryo shows the most conserved morphological pattern, followed by diversifying later stages, and the 'hourglass' model, in which constraints are imposed to conserve organogenesis stages, which is called the phylotypic period. Here we perform a quantitative comparative transcriptome analysis of several model vertebrate embryos and show that the pharyngula stage is most conserved, whereas earlier and later stages are rather divergent. These results allow us to predict approximate developmental timetables between different species, and indicate that pharyngula embryos have the most conserved gene expression profiles, which may be the source of the basic body plan of vertebrates.
Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis.
Sex, Specimen part, Disease, Disease stage
View SamplesTranscription profiling of mouse development
Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis.
Sex, Specimen part, Disease, Disease stage
View Samples