Microarray analysis was performed on BWF1 mice spleenocyte cells in control and pCONS treated mice.
Distinct gene signature revealed in white blood cells, CD4(+) and CD8(+) T cells in (NZBx NZW) F1 lupus mice after tolerization with anti-DNA Ig peptide.
No sample metadata fields
View SamplesMurine models have been valuable instruments in defining the pathogenesis of diabetic nephropathy (DN), but they only partially recapitulate disease manifestations of human DN, limiting their utility . In order to define the molecular similarities and differences between human and murine DN, we performed a cross-species comparison of glomerular transcriptional networks. Glomerular gene expression was profiled in patients with early type 2 DN and in three mouse models (streptozotocin DBA/2 mice, db/db C57BLKS, and eNOS-deficient C57BLKS db/db mice). Species-specific transcriptional networks were generated and compared with a novel network-matching algorithm. Three shared, human-mouse cross-species glomerular transcriptional networks containing 143 (Human-STZ), 97 (Human- db/db), and 162 (Human- eNOS-/- db/db) gene nodes were generated. Shared nodes across all networks reflected established pathogenic mechanisms of diabetic complications, such as elements of JAK-STAT and VEGFR signaling pathways . In addition, novel pathways not formally associated with DN and cross-species gene nodes and pathways unique to each of the human-mouse networks were discovered. The human-mouse shared glomerular transcriptional networks will assist DN researchers in the selection of mouse models most relevant to the human disease process of interest. Moreover, they will allow identification of new pathways shared between mice and humans.
Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli.
Age, Specimen part, Disease, Disease stage, Treatment
View SamplesTransfection of a Kaposi's sarcoma (KS) herpesvirus (KSHV) Bacterial Artificial Chromosome (KSHVBac36) into mouse bone marrow endothelial lineage cells generated a cell (mECK36) that induced KS-like tumors in mice. mECK36 formed KSHV-harboring vascularized spindle-cell sarcomas that were LANA+ and displayed a KSHV and host transcriptomes reminiscent of KS tumors.
In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi's sarcoma.
No sample metadata fields
View SamplesIn eukaryotes, regulation of mRNA translation enables a fast, localized and finely tuned expression of gene products. Within the translation process, the first stage of translation initiation is most rigorously modulated by the actions of eukaryotic initiation factors (eIFs) and their associated proteins. These 11 eIFs catalyze the joining of the tRNA, mRNA and rRNA into a functional translation complex. Their activity is influenced by a wide variety of extra- and intracellular signals, ranging from global, such as hormone signaling and unfolded proteins, to specific, such as single amino acid imbalance and iron deficiency. Their action is correspondingly comprehensive, in increasing or decreasing recruitment and translation of most cellular mRNAs, and specialized, in targeting translation of mRNAs with regulatory features such as a 5 terminal oligopyrimidine tract (TOP), upstream open reading frames (uORFs), or an internal ribosomal entry site (IRES). In mammals, two major pathways are linked to targeted mRNA translation. The target of rapamycin (TOR) kinase induces translation of TOP and perhaps other subsets of mRNAs, whereas a family of eIF2 kinases does so with mRNAs containing uORFs or an IRES. TOR targets translation of mRNAs that code for proteins involved in translation, an action compatible with its widely accepted role in regulating cellular growth. The four members of the eIF2 kinase family increase translation of mRNAs coding for stress response proteins such as transcription factors and chaperones. Though all four kinases act on one main substrate, eIF2, published literature demonstrates both common and unique effects by each kinase in response to its specific activating stress. This suggests that the activated eIF2 kinases regulate the translation of both a global and a specific set of mRNAs. Up to now, few studies have attempted to test such a hypothesis; none has been done in mammals.
eIF2alpha kinases GCN2 and PERK modulate transcription and translation of distinct sets of mRNAs in mouse liver.
No sample metadata fields
View SamplesBRCA1, a well-known breast and ovarian cancer susceptibility gene with multiple interacting partners, is predicted to have diverse biological functions. However, to date its only well-established role is in the repair of damaged DNA and cell cycle regulation. In this regard, the etiopathological study of low penetrant variants of BRCA1 provides an opportunity to uncover its other physiologically important functions. Using this rationale, we studied the R1699Q variant of BRCA1, a potentially moderate risk variant, and found that it does not impair DNA damage repair but abrogates the repression of miR-155, a bona fide oncomir. We further show that in the absence of functional BRCA1, miR-155 is up-regulated in BRCA1-deficient mouse mammary epithelial cells, human and mouse BRCA1-deficienct breast tumor cell lines as well as tumors. Mechanistically, we found that BRCA1 represses miR-155 expression via its association with HDAC2, which deacetylates H2A and H3 on the miR-155 promoter. Finally, we show that over-expression of miR-155 accelerates whereas the knockdown of miR-155 attenuates the growth of tumor cell lines in vivo. Taken together, our findings demonstrate a new mode of tumor suppression by BRCA1 and reveal miR-155 as a potential therapeutic target for BRCA1-deficient tumors.
Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155.
Specimen part
View SamplesWe examined the functional significance of the R1699Q variant of human BRCA1 gene using a mouse ES cell-based assay.
Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155.
Specimen part
View SamplesAffymetrix Human Gene 1.1 ST Array profiling of 285 primary medulloblastoma samples.
Subgroup-specific structural variation across 1,000 medulloblastoma genomes.
Sex, Age
View Samples