To guarantee blood supply throughout adult life hematopoietic stem cells (HSCs) need to carefully balance between self-renewing cell divisions and quiescence. Identification of genes controlling HSC self-renewal is of utmost importance given that HSCs are the only stem cells with broad clinical applications. Transcription factor PU.1 is one of the major regulators of myeloid and lymphoid development. Recent reports suggest that PU.1 mediates its functions via gradual expression level changes rather than binary on/off states. So far, this has not been considered in any study of HSCs and thus, PU.1s role in HSC function has remained largely unclear. Here we demonstrate using hypomorphic mice with an engineered disruption of an autoregulatory feedback loop that decreased PU.1 levels resulted in loss of key HSC functions, all of which could be fully rescued by restoration of proper PU.1 levels via a human PU.1 transgene. Mechanistically, we found excessive HSC cell divisions and altered expression of cell cycle regulators whose promoter regions were bound by PU.1 in normal HSCs. Adequate PU.1 levels were maintained by a mechanism of direct autoregulation restricted to HSCs through a physical interaction of a -14kb enhancer with the proximal promoter. Our findings identify PU.1 as novel regulator controling the switch between cell division and quiescence in order to prevent exhaustion of HSCs. Given that even moderate level changes greatly impact stem cell function, our data suggest important therapeutic implications for leukemic patients with reduced PU.1 levels. Moreover, we provide first proof, that autoregulation of a transcription factor, PU.1, has a crucial function in vivo. We anticipate that our concept of how autoregulation forms an active chromosomal conformation will impact future research on transcription factor networks regulating stem cell fate.
Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells.
Specimen part
View SamplesThis data series was used for two separate studies. The initial study was aimed to idenify expression changes brought about by the Cecr2Gt45Bic mutation during neural closure. The study included two different strains, BALB/cCrl in which Cecr2GT45Bic shows a neural tube defect phenotype and FVB/N in which Cecr2Gt45Bic does not manifest neural closure defects. The second was to idenify strain specific expression differences present during neural closure of the mouse embryo between BALB/cCrl and FVB/N in order to identify candidate modifiers of the Cecr2Gt45Bic neural tube defect. Relevant abstracts are included below.
Strain-specific modifier genes of Cecr2-associated exencephaly in mice: genetic analysis and identification of differentially expressed candidate genes.
Sex, Specimen part
View Samples