This SuperSeries is composed of the SubSeries listed below.
An integrated systems biology approach identifies positive cofactor 4 as a factor that increases reprogramming efficiency.
Sex, Specimen part
View SamplesMultipotent spermatogonial stem cells (mSSCs) derived from SSCs are a potential new source of individualized pluripotent cells in regenerate medicine such as ESCs. We hypothesized that the culture-induced reprogramming of SSCs was mediated by a mechanism different from that of iPS, and was due to up-regulation of specific pluripotency-related genes during cultivation. Through a comparative analysis of expression profile data, we try to find cell reprogramming candidate factors from mouse spermatogonial stem cells. We used microarrays to analyze the gene expression profiles of culture-induced reprogramming converting unipotent spermatogonial stem cells to pluripotent spermatogonial stem cells.
An integrated systems biology approach identifies positive cofactor 4 as a factor that increases reprogramming efficiency.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcription factor <i>TFCP2L1</i> patterns cells in the mouse kidney collecting ducts.
Specimen part
View SamplesGene expression analysis of mouse kidney after conditional inactivation of transcription factor Tfcp2l1
Transcription factor <i>TFCP2L1</i> patterns cells in the mouse kidney collecting ducts.
Specimen part
View SamplesWe investigated the ability of transferrin receptor1 (TfRc) knockout cells to populate different domains of the developing kidney by using a chimeric approach. The TfRc cells developed into all segments of the developing nephron, but there was a relative exclusion from the ureteric bud and a positive bias towards the stromal compartment. Here we conducted a microarray analysis of differential gene expression between TfRc deficient and wild type (wt) cells in chimeric embryonic kidneys derived from embryos created by blastocyst injection of wt blastocysts with TfRc-/- green fluorescent protein-expressing (GFP+) embryonic stem cells.
Scara5 is a ferritin receptor mediating non-transferrin iron delivery.
No sample metadata fields
View SamplesThe transcription factor Nkx2.5 is required for specification of pharyngeal arch second heart field (SHF) progenitors that contribute to outflow tract (OFT) and right ventricle (RV) formation. Multiple sets of microarray data were analyzed to identify genes that are candidate targets of Nkx2.5 in the second heart field. These sets are: 1) publicly available data for cardiothoracic tissue from E9.5 Nkx2.5 wild-type, heterozygous and homozygous embryos; 2) an analysis of mouse E10.5 pharyngeal arch tissue; 3) an analysis of mouse E12.5 heart tissue; and 4) a temporal analysis of the cardiogenic cell line P19CL6. This combined analysis identified 11 genes (Lrrn1, Elovl2, Safb, Slc39a6, Khdrbs1, Hoxb4, Fez1, Ccdc117, Jarid2, Nrcam, and Enpp3) expressed in SHF-containing pharyngeal arch tissue whose regulation is dependent on Nkx2.5 expression.
Jarid2 is among a set of genes differentially regulated by Nkx2.5 during outflow tract morphogenesis.
Specimen part, Cell line
View SamplesPluripotent P19CL6 embryonic carcinoma cells can be differentiated to a cardiac lineage by culture in the presence of DMSO. The goal of this study was to characterize temporal gene expression patterns associated with cardiogenic differentiation. Gene expression analysis was conducted on differentiating P19CL6 cells at several time points following induction with 1% DMSO. Samples were processed for analysis by Affymetrix GeneChip.
Jarid2 is among a set of genes differentially regulated by Nkx2.5 during outflow tract morphogenesis.
Cell line
View SamplesWe have generated transgenic mice expressing constitutively activated aryl hydrocarbon receptor (CA-AhR) to examine the biological consequences of AhR activation..
A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis.
Specimen part
View SamplesTo examine the role of SPS1 in mammals, we generated a Sps1 knockout mouse and found that systemic SPS1 deficiency was embryonic lethal. Embryos were clearly underdeveloped by E8.5 and virtually reabsorbed by E14.5. Removal of Sps1 specifically in hepatocytes using Albumin-cre preserved viability, but significantly affected expression of a large number of mRNAs involved in cancer, embryonic development and the glutathione system. Particularly notable was the extreme deficiency of glutaredoxin 1 (GLRX1) and glutathione-S-transferase omega 1. To assess these phenotypes at the cellular level, we targeted the removal of SPS1 in F9 cells, a mouse embryonal carcinoma cell line, which recapitulated changes in the glutathione system proteins. We further found that several malignant characteristics of SPS1-deficient F9 cells were reversed, suggesting that SPS1 has a role in supporting and/or sustaining cancer. In addition, the increased ROS levels observed in F9 SPS1/GLRX1 deficient cells were reversed and became more like those in F9 SPS1 sufficient cells by overexpressing mouse or human GLRX1. The results suggest that SPS1 is an essential mammalian enzyme with roles in regulating redox homeostasis and controlling cell growth.
Selenophosphate synthetase 1 is an essential protein with roles in regulation of redox homoeostasis in mammals.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Derivation of haploid embryonic stem cells from mouse embryos.
Specimen part
View Samples