Biliary atresia (BA) is a rare cholestatic disease of unknown etiology that affects infants and shows an incidence of 1 out of 18,000 live births in Europe (1). The first therapeutic option is a timely performed portoenterostomy. However, the majority of patients suffer from a progressive inflammatory process, which leads to complete destruction of the extra- and intrahepatic biliary system followed by end-stage liver cirrhosis. Hence, BA is the leading indication for pediatric liver transplantation worldwide (2, 3). To understand the pathogenesis of the disease and improve theoutcome of BA patients, research has focused on the inflammatory process in liver and bile ducts, in which several factors are remarkably elevated, such as activated CD4 and CD8 T-cells, TNF alpha,IFN alpha and other proinflammatory TH1 cytokines (3-8). By the time of diagnosis, however, the disease has already reached an advanced state, characterized by the complete obstruction of the extrahepatic bile ducts with impaired bile flow and fibrosis or cirrhosis of the liver. Therefore, studies in humans focusing on the trigger mechanism of BA are limited due to the paucity of liver and availability of bile duct tissue for research. One infectious animal model has been developed, in which newborn Balb/c mice exclusively show the experimental BA phenotype after infection with rhesus rotavirus (RRV) (9, 10). This model allows the analysis of the inflammatory reactions in liver and bile ducts at early steps in the development of bile duct atresia (11-20). Furthermore, inbred mouse strains have been shown to have a different susceptibility for the development of experimental BA, suggesting that Balb/c mice have an immunological gap responsible for disease progression (10, 12). The aim of this study was to identify key genes responsible for the BA phenotype by comparing the transcriptomes at an early time point after virus infection, i.e. before bile duct atresia, between two mouse strains with different susceptibilities to BA. Differences in the virus titration and the clinical course of infected mice were analyzed, and variations in the hepatic gene response assessed by comparative microarray assays were correlated to variances in the hepatic inflammatory reaction.
Susceptibility to experimental biliary atresia linked to different hepatic gene expression profiles in two mouse strains.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Canonical and atypical E2Fs regulate the mammalian endocycle.
Age, Specimen part
View SamplesTo understand the underlying cause and mechanisms of changes in hepatocyte ploidy upon Albumin-Cre mediated deletion of E2f7&8 and Mx1-Cre mediated deletion of E2f1,2&3, we analysed global gene expression of 6 weeks and 2 months liver tissues.
Canonical and atypical E2Fs regulate the mammalian endocycle.
Age, Specimen part
View SamplesTo understand the underlying cause for the observed apoptosis in E2f1-3 deficient myeloid cells. We compared gene expression profiles of Cd11b+ sorted myeloid cells isolated from bone marrow of control (E2F1-/- ) and experimental (Mxcre;E2F1-/-2-/-3f/f ) mice.
E2f1-3 are critical for myeloid development.
Age, Specimen part
View SamplesLandmark events occur in a coordinated manner during preimplantation development of the mammalian embryo, yet the regulatory network that orchestrates these events remains largely unknown.
An Oct4-Sall4-Nanog network controls developmental progression in the pre-implantation mouse embryo.
No sample metadata fields
View SamplesThe mechanisms involved in epithelium-stroma interactions remain poorly understood, despite the importance of the microenvironment during tumorigenesis. Here, we studied the role of Ets2 transcrpiton factor in tumor associated fibroblasts in the MMTV-ErbB2 mammary tumor model. Inactivation of Ets2 specifically in fibroblasts using Fsp-cre significantly reduced tumor growth, in contrast to Ets2 inactivation in epithelium in which no differences in tumor growth were observed.
Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Redeployment of Myc and E2f1-3 drives Rb-deficient cell cycles.
Specimen part
View SamplesDiet-induced obesity (DIO) is rapidly becoming a global health problem, particularly as Westernization of emerging nations continues. Currently, one third of adult Americans are considered obese and, if current trends continue, >90% of US citizens are predicted to be affected by 2050. However, efforts to fight this epidemic have not yet produced sound solutions for prevention or treatment. Our studies reveal a balanced and chronobiological relationship between food consumption, daily variation in gut microbial evenness and function, basomedial hypothalamic circadian clock (CC) gene expression, and key hepatic metabolic regulatory networks , including CC and nuclear receptors (NR), that is are essential for metabolic homeostasis. Western diets high in saturated fats dramatically alter diurnal variation in microbial composition and function, which in turn lead to uncoupling of the hepatic CC and NR networks from central CC control in ways that offset the timing and types of regulatory factors directing metabolic function. These signals include microbial metabolites such as short chain fatty acids (SCFAs) and hydrogen sulfide (H2S) that can directly regulate or disrupt metabolic networks of the hepatocyte. Our study therefore provides insights into the complex and dynamic relationships between diet, gut microbes, and the host that are critical for maintenance of health. Perturbations of this constellation of processes, in this case by diet-induced dysbiosis and its metabolomic signaling, can potentially promote metabolic imbalances and disease. This knowledge opens up many possibilities for novel therapeutic and interventional strategies to treat and prevent DIO, ranging from the manipulation of gut microbial function to pharmacological targeting of host pathways to restore metabolic balance.
Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.
Specimen part
View SamplesRb and E2F are thought to play antagonistic roles in celll proliferation. However, this model is based mostly from in vitro cell culture systems. We used small intestines to test this model in vivo.
E2f1-3 switch from activators in progenitor cells to repressors in differentiating cells.
Age, Specimen part
View SamplesIre1 conditional null or control mice of 3-months old were injected intraperitoneally with TM or vehicle.
The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis.
Specimen part
View Samples