Thymic stromal lymphopoietin (TSLP) is a type I cytokine that plays a central role in induction of allergic inflammatory responses. Its principal targets have been reported to be dendritic cells and / or CD4 T cells; epithelial cells are a principal source. We report here the development of a reporter mouse (TSLP-ZsG) in which a ZsGreen (ZsG)-encoding construct has been inserted by recombineering into a bacterial artificial chromosome (BAC) immediately at the translation initiating ATG of TSLP. The expression of ZsG by mice transgenic for the recombinant BAC appears to be a faithful surrogate for TSLP expression, particularly in keratinocytes and medullary thymic epithelials cells (mTECs). A comparison of gene expression in ZsG expressing and ZsG negative mTECs and cortical thymic epithelial cells, which are all ZsG negative, revealed that all three populations can be distinguished from one another. In particular ZsG (and TSLP) expressing mTECs and ZsG- mTECs are separable populations based on gene expression profiling. Little or no expression of ZsG is observed in bone marrow-derived mast cells or basophils or in CD45+ cells infiltrating TSLP/ZsG-expressing skin. Using the TSLP-ZsG reporter mouse, we show that TNFa and IL-4/IL-13 are potent inducers of TSLP expression by keratinocytes and that local activation of Th2 and Th1 cells induces keratinocyte TSLP expression. We suggest that the capacity of TSLP to both induce Th2 differentiation and to be induced by activated Th2 cells raises the possibility that TSLP may be involved in a positive feedback loop to enhance allergic inflammatory conditions.
TSLP expression: analysis with a ZsGreen TSLP reporter mouse.
Specimen part, Treatment
View SamplesAntagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver
Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver.
No sample metadata fields
View SamplesExpression profiling of cultured HL-1 cardiomyocytes subjected to hypoxia for 8 hours.
The VLDL receptor promotes lipotoxicity and increases mortality in mice following an acute myocardial infarction.
Cell line
View SamplesRetinal cells are specified in a zebrafish recessive mutant called young (yng) but they fail to terminally differentiate; i.e. extend neurites and make synaptic contacts. A point mutation in a brahma-related gene 1 (brg1) is responsible for this phenotype. In this microarray study, a three-factor factorial design was utilized to investigate the effects of 1) mutation, 2) change in time (36 vs. 52hpf), and 3) change in tissue (retina vs. whole embryos), and their interactions on gene expression. Significant probesets were inferred by using both specific contrasts of the fitted Analysis of Variance (ANOVA) models and a corresponding 2-fold expression cutoff. The probesets were grouped into three broad categories: 1) Brg1-regulated retinal differentiation genes (731 probsets), 2) Retinal specific genes but independent of Brg1 regulation (3038 probesets) and 3) Genes regulated by Brg1 but outside the retina (107 probesets). Four gene groups/pathways including neurite outgrowth regulators, Delta-Notch signalling molecules, Irx family members and specific cell cycle regulators were identified in the first group, and their relevance for retinal differentiation functionally validated. This study demonstrates that an approach such as ours can identify relevant genes and pathways involved in retinal development as well as the development of other tissues at the same time.
Factorial microarray analysis of zebrafish retinal development.
Specimen part
View SamplesSkin and bladder epithelia form effective permeability barriers through the activation of distinct differentiation gene programs. Employing a genome-wide gene expression study, we identified transcription regulators whose expression correlates highly with that of differentiation markers both in bladder and skin, including the Grainyhead factor Get1/Grhl3, already known to be important for epidermal barrier formation. In the bladder, Get1 is most highly expressed in the differentiated umbrella cells and its mutation in mice leads to a defective bladder epithelial barrier formation due to failure of apical membrane specialization. Genes encoding components of the specialized urothelial membrane, the uroplakins, were downregulated in Get1-/- mice. At least one of these genes, Uroplakin II, is a direct target of Get1. The urothelial-specific activation of the Uroplakin II gene is due to selective binding of Get1 to the Uroplakin II promoter in urothelial cells, most likely regulated by histone modifications. These results demonstrate a key role for Get1 in urothelial differentiation and barrier formation.
The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation.
Specimen part
View SamplesSkin and bladder epithelia form effective permeability barriers through the activation of distinct differentiation gene programs. Employing a genome-wide gene expression study, we identified transcription regulators whose expression correlates highly with that of differentiation markers both in bladder and skin, including the Grainyhead factor Get1/Grhl3, already known to be important for epidermal barrier formation. In the bladder, Get1 is most highly expressed in the differentiated umbrella cells and its mutation in mice leads to a defective bladder epithelial barrier formation due to failure of apical membrane specialization. Genes encoding components of the specialized urothelial membrane, the uroplakins, were downregulated in Get1-/- mice. At least one of these genes, Uroplakin II, is a direct target of Get1. The urothelial-specific activation of the Uroplakin II gene is due to selective binding of Get1 to the Uroplakin II promoter in urothelial cells, most likely regulated by histone modifications. These results demonstrate a key role for Get1 in urothelial differentiation and barrier formation.
The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation.
Specimen part
View SamplesThe lung host immune responses following M.tuberculosis infection in the mouse model of tuberculosis were assayed by studying the gene expression profiles at day 0, day 12, 15 and 21 post infection
Profiling early lung immune responses in the mouse model of tuberculosis.
Specimen part, Time
View SamplesThe specific contribution of the two TNF-receptors Tnfr1 and Tnfr2 to TNF-induced inflammation in the glomerulus is unknown. In mice, TNF exposure induces glomerular expression of inflammatory mediators like adhesion molecules and chemokines in vivo, and glomerular accumulation of leukocytes.
Distinct contributions of TNF receptor 1 and 2 to TNF-induced glomerular inflammation in mice.
Specimen part, Treatment
View SamplesGene expression profiling was performed to identify Sfmbt1-dependent regulation in myogenic programs. To establish the magnitude of the Sfmbt1 effect on muscle cells, we have compared gene expression profiles of C2C12 cells transduced with lentiviruses expressing scramble shRNA control or shSfmbt1. Our analysis suggested that Sfmbt1 critically confers transcriptional silencing of muscle genes in myogenic progenitor cells.
Proteomic and functional analyses reveal the role of chromatin reader SFMBT1 in regulating epigenetic silencing and the myogenic gene program.
Specimen part, Cell line
View SamplesNutritional and genetic risk factors for intestinal tumors are additive on mouse tumor phenotypes, demonstrating that diet and genetic factors impact risk by distinct combinatorial mechanisms. We analyzed expression profiles of small intestine crypts and villi from mice with nutritional and genetic risk factors. The results advanced our understanding of the mechanistic roles played by major risk factors in the pathogenesis of intestinal tumors.
Paneth cell marker expression in intestinal villi and colon crypts characterizes dietary induced risk for mouse sporadic intestinal cancer.
Age, Specimen part
View Samples