This SuperSeries is composed of the SubSeries listed below.
In vivo mapping of notch pathway activity in normal and stress hematopoiesis.
Sex, Age, Specimen part
View SamplesNotch signaling defines a conserved, fundamental pathway, responsible for determination in metazoan development and is widely recognized as an essential component of lineage specific differentiation and stem cell self-renewal in many tissues including the hematopoietic system. Until recently, the majority of studies in the hematopoietic system focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles in early hematopoiesis has been limited due to a paucity of genetic tools available To fate-map Notch receptor expression and pathway activity in the hematopoietic system we used tamoxifen-inducible CreER knock-in mice for individual Notch receptors in combination to a novel Notch reporter strain (Hes1GFP) and a conditional gain of function allele of Notch2 receptor (Rosa-lsl-ICN2).
In vivo mapping of notch pathway activity in normal and stress hematopoiesis.
Sex, Age, Specimen part
View SamplesNotch signaling defines a conserved, fundamental pathway, responsible for determination in metazoan development and is widely recognized as an essential component of lineage specific differentiation and stem cell self-renewal in many tissues including the hematopoietic system. Until recently, the majority of studies in the hematopoietic system focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles in early hematopoiesis has been limited due to a paucity of genetic tools available To fate-map Notch receptor expression and pathway activity in the hematopoietic system we used tamoxifen-inducible CreER knock-in mice for individual Notch receptors in combination to a novel Notch reporter strain (Hes1GFP) and a conditional gain of function allele of Notch2 receptor (Rosa-lsl-ICN2).
In vivo mapping of notch pathway activity in normal and stress hematopoiesis.
Sex, Specimen part
View SamplesNotch signaling is one of the central regulators of differentiation in a variety of organisms and tissue types. Within the hematopoietic system, Notch is essential for the emergence of definitive HSC during fetal life and controls adult HSC differentiation to the T-cell lineage. Notch activation is controlled by the gamma-secretase complex complex, composed of presenilin, nicastrin (Ncstn), anterior pharynx-1 (Aph1), and presenilin enhancer-2
A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia.
Sex, Age
View SamplesNotch signaling is one of the central regulators of differentiation in a variety of organisms and tissue types. Within the hematopoietic system, Notch is essential for the emergence of definitive HSC during fetal life and controls adult HSC differentiation to the T-cell lineage. Notch activation is controlled by the gamma-secretase complex complex, composed of presenilin, nicastrin (Ncstn), anterior pharynx-1 (Aph1), and presenilin enhancer-2
A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia.
Sex, Age
View SamplesNotch signaling is one of the central regulators of differentiation in a variety of organisms and tissue types. Within the hematopoietic system, Notch is essential for the emergence of definitive HSC during fetal life and controls adult HSC differentiation to the T-cell lineage. Notch activation is controlled by the gamma-secretase complex complex, composed of presenilin, nicastrin (Ncstn), anterior pharynx-1 (Aph1), and presenilin enhancer-2
A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia.
Sex, Age
View SamplesRecurrent somatic mutations in TET2 and in other genes that regulate the epigenetic state have been identified in patients with myeloid malignancies and in other cancers. However, the in vivo effects of Tet2 loss have not been delineated. We report here that Tet2 loss leads to increased stem-cell self-renewal and to progressive stem cell expansion. Consistent with human mutational data, Tet2 loss leads to myeloproliferation in vivo, notable for splenomegaly and monocytic proliferation. In addition, haploinsufficiency for Tet2 confers increased self-renewal and myeloproliferation, suggesting that the monoallelic TET2 mutations found in most TET2-mutant leukemia patients contribute to myeloid transformation. This work demonstrates that absent or reduced Tet2 function leads to enhanced stem cell function in vivo and to myeloid transformation.
Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation.
Specimen part
View SamplesQuaking are RNA binding proteins, which are known to regulate the expression of different genes at the post-transcriptional level. Genetic interference with quaking a (qkia) and quaking c (qkic) leads to major myofibril defects during zebrafish development, without affecting early muscle differentiation. In order to understand how qkia and qkic jointly regulate myofibril formation, we performed a comparative analysis of the transcriptome of qkia/qkic (qkia mutant injected with qkic morpholino) versus control embryos. We show that Quaking activity is required for accumulation of the muscle-specific tropomyosin 3 transcript, tpm3.1. Whereas interference with tmp3.1 function disrupts myofibril formation, reintroducing tpm3.1 transcripts into embryos with reduced Quaking activity can restore structured myofibrils. Thus, we identify tropomyosin as an essential component in the process of myofibril formation and as a relay downstream of the regulator proteins Quaking. Overall design: Transcriptome of control versus qkia/qkic embryos at 24-26hpf. Biological triplicate were prepared for both condition (3x2 samples).
Quaking RNA-Binding Proteins Control Early Myofibril Formation by Modulating Tropomyosin.
No sample metadata fields
View SamplesCocaine-mediated repression of the histone methyltransferase (HMT) G9a has recently been implicated in transcriptional, morphological, and behavioral responses to chronic cocaine administration. Here, using a ribosomal affinity purification approach, we find that G9a repression by cocaine occurs in both Drd1 (striatonigral)- and Drd2 (striatopallidal)-expressing medium spiny neurons (MSNs). Conditional knockout and overexpression of G9a within these distinct cell types, however, reveals divergent behavioral phenotypes in response to repeated cocaine treatment. Our studies further indicate that such developmental deletion of G9a selectively in Drd2 neurons results in the unsilencing of transcriptional programs normally specific to striatonigral neurons, and the acquisition of Drd1-associated projection and electrophysiological properties. This partial striatopallidal to striatonigral switching phenotype in mice indicates a novel role for G9a in contributing to neuronal subtype identity, and suggests a critical function for cell-type specific histone methylation patterns in the regulation of behavioral responses to environmental stimuli.
G9a influences neuronal subtype specification in striatum.
Sex, Specimen part
View Samples