Sky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.
Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.
Genetic information
View SamplesSky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.
Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.
Genetic information
View SamplesSky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.
Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.
Genetic information
View SamplesSky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.
Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.
Genetic information
View SamplesSky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.
Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.
Genetic information
View SamplesSky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.
Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.
Genetic information
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative cross-omics analysis in primary mouse hepatocytes unravels mechanisms of cyclosporin A-induced hepatotoxicity.
Specimen part
View SamplesThe transcriptomics changes induced in Primary Mouse Hepatocytes by Cyclosporin A after treatment for 24h and 48h
Integrative cross-omics analysis in primary mouse hepatocytes unravels mechanisms of cyclosporin A-induced hepatotoxicity.
Specimen part
View SamplesThe functioning of a specific tissue depends on the expression pattern of the different genes. We used microarrays to compare gene expression across different murine tissues, to get a better understanding in the expression pattern and functioning of the different tissues. With this analysis, we were not only able to identify genes that were specifically expressed in a spicific tissue but, as important, we also identified genes that were specifically repressed in a tissue, compared to al the other analysed tissues.
Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation.
Sex, Specimen part
View Samples