This SuperSeries is composed of the SubSeries listed below.
Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer.
Specimen part, Treatment
View SamplesPAX8-PPARG fusion protein (PPFP) results from a t(2;3)(q13;p25) chromosomal translocation, is found in 30% of follicular thyroid carcinomas, and demonstrates oncogenic capacity in transgenic mice. A PPARG ligand, pioglitazone, is highly therapeutic in mice with PPFP thyroid carcinoma. We used our previously characterized transgenic mouse model of PPFP thyroid carcinoma to identify PPFP binding sites in vivo using ChIP-seq, and to identify genes and pathways regulated by PPFP with and without pioglitazone treatment via integration with RNA-seq and Affymetrix microarray data. This submission contains the Affymetrix microarray data. PPFP and pioglitazone regulated genes involved in lipid and fatty acid metabolism, ribosome function, immune processes, cell death and other cancer-related processes. The RNA-seq data yielded similar findings.
Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer.
Specimen part, Treatment
View SamplesInappropriate excess of the steroid hormone aldosterone, which is a mineralocorticoid receptor (MR) agonist, is associated with increased inflammation and risk of cardiovascular disease. MR antagonists are cardioprotective and antiinflammatory in vivo, and evidence suggests that they mediate these effects in part by aldosterone- independent mechanisms.
Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice.
Sex, Specimen part, Treatment
View Samples