Mouse LT-HSC were sorted and cultured in mScf, mTpo, mFlt3L, hIGFBP2 and Angptl5 for 2 days. These expression values were related to insertions of gamma-retroviral, lentiviral or alpharetroviral vectors carrying GFP which were retrieved after serial murine BM transplantation. The relation between gene expression in the cells responsible for long-term hematopoiesis and location of vector integration was investigated.
Alpharetroviral self-inactivating vectors: long-term transgene expression in murine hematopoietic cells and low genotoxicity.
Specimen part
View SamplesSexual dimorphism of the behaviors or physiological functions in mammals is mainly due to the sex difference of the brain. The goal of this study is to identify genes mediating sexaul dimorphism of the brain.
Microarray analysis of perinatal-estrogen-induced changes in gene expression related to brain sexual differentiation in mice.
Sex, Specimen part
View SamplesLigand-mediated activation of the nuclear hormone receptor PPAR gamma lowers blood pressure and improves glucose tolerance in humans. Two naturally occurring mutations (P467L, V290M) in the ligand binding domain of PPAR gamma have been described in humans that lead to severe insulin resistance and hypertension. Experimental evidence suggests that these mutant versions of PPAR gamma act in a dominant negative fashion. To better understand the molecular mechanisms underlying PPAR gamma action in the vasculature, we determined the gene expression patterns in mouse aorta in response to activation or interference with the PPAR gamma signaling pathway.
Bioinformatic analysis of gene sets regulated by ligand-activated and dominant-negative peroxisome proliferator-activated receptor gamma in mouse aorta.
No sample metadata fields
View SamplesHistone H3 lysine 9 (H3K9) methylation is an epigenetic mark of transcriptionally repressed chromatin. During mammalian development, H3K9 methylation levels seem to be spatiotemporally regulated by the opposing activities of methyltransferases and demethylases to govern correct gene expression. However, the combination(s) of H3K9 methyltransferase(s) and demethylase(s) that contribute to this regulation and the genes regulated by them remain unclear. Herein, we demonstrate the essential roles of H3K9 demethylases Jmjd1a and Jmjd1b in the embryogenesis and viability control of embryonic stem (ES) cells. Mouse embryos lacking Jmjd1a/Jmjd1b died after implantation. Depletion of Jmjd1a/Jmjd1b in mouse ES cells induced rapid cell death accompanied with a massive increase in H3K9 methylation. Jmjd1a/Jmjd1b depletion induced an increase in H3K9 methylation in the gene-rich regions of the chromosomes, indicating that Jmjd1a/Jmjd1b removes H3K9 methylation marks in the euchromatin. Importantly, the additional disruption of the H3K9 methyltransferase G9a in a Jmjd1a/Jmjd1b-deficient background rescued not only the H3K9 hypermethylation phenotype but also the cell death phenotype. We also found that Jmjd1a/Jmjd1b removes H3K9 methylation marks deposited by G9a in the Oct4 and Ccnd1 loci to activate transcription. In conclusion, Jmjd1a/Jmjd1b ensures ES cell viability by antagonizing G9a-mediated H3K9 hypermethylation in the gene-rich euchromatin.
Combined Loss of JMJD1A and JMJD1B Reveals Critical Roles for H3K9 Demethylation in the Maintenance of Embryonic Stem Cells and Early Embryogenesis.
Specimen part
View SamplesAnalysis of expression profiles of pDCs from wild type and heterozygous E2-2 mice. Results show the control by E2-2 of the expression of pDC-enriched genes.
Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.
No sample metadata fields
View SamplesWe assessed the impact of glucose transporter Glut2 gene inactivation in adult mouse liver (LG2KO mice). This suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditure, and insulin sensitivity were identical in LG2KO and control mice. Glucose tolerance was normal early after Glut2 inactivation but intolerance developed at later time. This was caused by progressive impairment of glucose-stimulated insulin secretion even though beta-cell mass and insulin content remained normal. Liver transcript profiling revealed a coordinate down-regulation of cholesterol biosynthesis genes in LG2KO mice. This was associated with reduced hepatic cholesterol in fasted mice and a 30 percent reduction in bile acid production. We showed that chronic bile acids or FXR agonist treatment of primary islets increases glucose-stimulated insulin secretion, an effect not seen in islets from fxr-/- mice. Collectively, our data show that glucose sensing by the liver controls beta-cell glucose competence, through a mechanism that likely depends on bile acid production and action on beta-cells.
Hepatic glucose sensing is required to preserve β cell glucose competence.
Specimen part
View Samples