The cancer-risk associated rs6983267 single nucleotide polymorphism (SNP) and the accompanying long non-coding RNA CCAT2 in the highly amplified 8q24.21 region has been implicated in cancer predisposition, though causality has not been established. Here, using allele-specific CCAT2 transgenic mice, we demonstrate that CCAT2 overexpression leads to spontaneous myeloid malignancies. CCAT2 is overexpressed in bone marrow and peripheral blood of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) patients. CCAT2 induces global deregulation of gene expression by downregulating EZH2 in vitro and in vivo in an allele-specific manner. We also identified a novel disease-specific RNA mutation (named DNA-to-RNA allelic imbalance, DRAI) at the SNP locus in MDS/MPN patients and CCAT2-transgenic mice. The RNA transcribed from the SNP locus in malignant hematopoietic cells have different allelic composition from the corresponding genomic DNA, a phenomenon rarely observed in normal cells. Our findings provide fundamental insights into the functional role of rs6983267 SNP and CCAT2 in myeloid malignancies.
Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA <i>CCAT2</i> induce myeloid malignancies via unique SNP-specific RNA mutations.
Specimen part
View SamplesThe E-protein transcription factors E2A and HEB play important roles at several stages of hematopoiesis. However, the exact mechanism for theire action and the main targets in the LY6D negative common lymphoid progentior (CLP) compartment remains unknown. By adressing this question, we will gain important infromation regarding the early events leading to B-cell specification.
The transcription factors E2A and HEB act in concert to induce the expression of FOXO1 in the common lymphoid progenitor.
Specimen part
View SamplesIn order to investigate molecular events involved in the regulation of lymphoid lineage commitment, we crossed lamda5 reporter transgenic mice to mice where the GFP gene is inserted into the Rag1 locus. This allowed us to sub-fractionate common lymphoid progenitors (CLPs) and pre-pro-B cells into lamda5-Rag1low, lamda5-Rag1high and lamda5+Rag1high cells. Clonal in vitro differentiation analysis demonstrated that Rag1low cells gave rise to B/T and NK cells. Rag1high cells displayed reduced NK-cell potential with preserved capacity to generate B- and T-lineage cells while the lamda5+ cells were B-lineage restricted. Ebf1 and Pax5 expression was largely confined to the Rag1high populations. These cells also expressed a higher level of the surface protein LY6D providing an additional tool for the analysis of early lymphoid development. These data suggest that the classical CLP compartment composes a mixture of cells with more or less restricted lineage potentials opening new possibilities to investigate early hematopoiesis.
Single-cell analysis of the common lymphoid progenitor compartment reveals functional and molecular heterogeneity.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
In vivo mapping of notch pathway activity in normal and stress hematopoiesis.
Sex, Age, Specimen part
View SamplesNotch signaling defines a conserved, fundamental pathway, responsible for determination in metazoan development and is widely recognized as an essential component of lineage specific differentiation and stem cell self-renewal in many tissues including the hematopoietic system. Until recently, the majority of studies in the hematopoietic system focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles in early hematopoiesis has been limited due to a paucity of genetic tools available To fate-map Notch receptor expression and pathway activity in the hematopoietic system we used tamoxifen-inducible CreER knock-in mice for individual Notch receptors in combination to a novel Notch reporter strain (Hes1GFP) and a conditional gain of function allele of Notch2 receptor (Rosa-lsl-ICN2).
In vivo mapping of notch pathway activity in normal and stress hematopoiesis.
Sex, Age, Specimen part
View SamplesNotch signaling defines a conserved, fundamental pathway, responsible for determination in metazoan development and is widely recognized as an essential component of lineage specific differentiation and stem cell self-renewal in many tissues including the hematopoietic system. Until recently, the majority of studies in the hematopoietic system focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles in early hematopoiesis has been limited due to a paucity of genetic tools available To fate-map Notch receptor expression and pathway activity in the hematopoietic system we used tamoxifen-inducible CreER knock-in mice for individual Notch receptors in combination to a novel Notch reporter strain (Hes1GFP) and a conditional gain of function allele of Notch2 receptor (Rosa-lsl-ICN2).
In vivo mapping of notch pathway activity in normal and stress hematopoiesis.
Sex, Specimen part
View SamplesThe gastrointestinal tract of mammals is inhabited by hundreds of distinct species of commensal microorganisms that exist in a mutualistic relationship with the host. The process by which the commensal microbiota influence the host immune system is poorly understood. We show here that colonization of the small intestine of mice with a single commensal microbe, segmented filamentous bacterium (SFB), is sufficient to induce the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the lamina propria. SFB adhere tightly to the surface of epithelial cells in the terminal ileum of mice with Th17 cells but are absent from mice that have few Th17 cells. Colonization with SFB was correlated with increased expression of genes associated with inflammation, anti-microbial defenses, and tissue repair, and resulted in enhanced resistance to the intestinal pathogen Citrobacter rodentium. Control of Th17 cell differentiation by SFB may thus establish a balance between optimal host defense preparedness and potentially damaging T cell responses. Manipulation of this commensal-regulated pathway may provide new opportunities for enhancing mucosal immunity and treating autoimmune disease.
Induction of intestinal Th17 cells by segmented filamentous bacteria.
Specimen part
View SamplesIn order to identify the targets of GATA4-FOG2 action in mammalian heart development we performed Affymetrix microarray comparisons of gene expression in normal and mutant at embryonic (E) day E12.5 hearts. We compared RNA samples from both Fog2-null and Gata4ki/ki mutant E12.5 hearts to the wild-type control E12.5 hearts. We reasoned that as the phenotypes of the Fog2 knockout and Gata4ki/ki mutation (a V217G mutation that specifically cripples the interaction between GATA4 and FOG proteins) are similar, we should expect to identify a similar set of differentially expressed genes in both experiments. As an additional control, we expected to find the Fog2 gene expression absent in the mutant (null) Fog2 cardiac sample, but not Gata4ki/ki sample.
Cardiac expression of Tnnt1 requires the GATA4-FOG2 transcription complex.
Specimen part
View SamplesTranscriptome analysis of mRNA samples from a cohort of mice with histopathologically diagnosed Undifferentiated Myeloid Leukemia.
Analyzing tumor heterogeneity and driver genes in single myeloid leukemia cells with SBCapSeq.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesSkin and bladder epithelia form effective permeability barriers through the activation of distinct differentiation gene programs. Employing a genome-wide gene expression study, we identified transcription regulators whose expression correlates highly with that of differentiation markers both in bladder and skin, including the Grainyhead factor Get1/Grhl3, already known to be important for epidermal barrier formation. In the bladder, Get1 is most highly expressed in the differentiated umbrella cells and its mutation in mice leads to a defective bladder epithelial barrier formation due to failure of apical membrane specialization. Genes encoding components of the specialized urothelial membrane, the uroplakins, were downregulated in Get1-/- mice. At least one of these genes, Uroplakin II, is a direct target of Get1. The urothelial-specific activation of the Uroplakin II gene is due to selective binding of Get1 to the Uroplakin II promoter in urothelial cells, most likely regulated by histone modifications. These results demonstrate a key role for Get1 in urothelial differentiation and barrier formation.
The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation.
Specimen part
View Samples