Exercise training improves whole body glucose homeostasis through effects largely attributed to adaptations in skeletal muscle; however, training also affects other tissues including adipose tissue. To determine if exercise-induced adaptations to adipose tissue contribute to training-induced improvements in glucose homeostasis, subcutaneous white adipose tissue (scWAT) from trained or sedentary donor mice was transplanted into the visceral cavity of sedentary recipients. Remarkably, nine days post-transplantation, mice receiving trained scWAT had improved glucose tolerance and enhanced insulin sensitivity compared to mice transplanted with sedentary scWAT or sham-treated mice. Mice transplanted with trained scWAT had increased insulin-stimulated glucose uptake in tibialis anterior and soleus muscles and brown adipose tissue, suggesting that the transplanted scWAT exerted endocrine effects. Furthermore, the deleterious effects of high-fat feeding on glucose tolerance and insulin sensitivity were completely reversed if high-fat fed recipient mice were transplanted with trained scWAT. In additional experiments, voluntary exercise training by wheel running for only 11 days resulted in profound changes in scWAT including increased expression of 1550 genes involved in numerous cellular functions, including metabolism. Exercise training causes adaptations to scWAT that elicit metabolic improvements in other tissues, demonstrating a previously unrecognized role for adipose tissue in the beneficial effects of exercise on systemic glucose homeostasis.
A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis.
Sex, Age, Specimen part
View SamplesEthanol inhibits the proliferation of neural stem cells in the fetal, adolescent, and adult brain. The consequences are cognitive deficits associated with fetal alcohol spectrum disorder and alcohol use disorder. We tested the hypothesis that ethanol affects progression through cell cycle checkpoints by differentially modifying transcriptional processes. Monolayer cultures of NS-5 neural stem cells were treated for 48 hr with the mitogenic agent FGF2 or the anti-mitogenic TGF1 in the absence or presence of ethanol. Cell cycle elongation was induced by a global down-regulation of genes involved in cell cycle progression, including the cyclin E system. Checkpoint regulation occurred downstream of p21 and Jun-oncogene signaling cascades. Thus, ethanol can affect cell cycle progression by altering transcript expression of strategic genes downstream of the G1/S checkpoint.
Ethanol-induced methylation of cell cycle genes in neural stem cells.
Specimen part, Treatment
View SamplesPurpose: Investigate the molecular determinants of retinal regeneration in adult vertebrates by analyzing the gene expression profiles of control and post-lesion retina of adult zebrafish, a system that regenerates following injury. Methods: Gene expression profiles of zebrafish retina and brain were determined with DNA microarray, RT-PCR, and real-time quantitative PCR analyses. Damaged retinas and their corresponding controls were analyzed 2-5 days post-lesion (acute injury condition) or 14 d post-lesion (cell regeneration condition). Results: Expected similarities and differences in the gene expression profile of zebrafish retina and brain were observed, confirming the applicability of the gene expression techniques. Mechanical lesion of retina triggered significant, time-dependent changes in retinal gene expression. The induced transcriptional changes were consistent with cellular phenomena known to occur, in a time-dependent manner, subsequent to retinal lesion, including cell cycle progression, axonal regeneration, and regenerative cytogenesis. Conclusions: The results indicate that retinal regeneration in adult zebrafish involves a complex set of induced, targeted changes in gene transcription, and suggest that these molecular changes underlie the ability of the adult vertebrate retina to regenerate. Keywords: time course; injury response; cellular correlation Control brain and retina (unlesioned); Control and lesioned retina (matched animals, at least n = 8 for each condition).
Gene expression profiles of intact and regenerating zebrafish retina.
Specimen part, Subject, Time
View Samples